2 research outputs found

    Electrochemical And Mechanical Properties Of Hydrogels Based On Conductive Poly(3,4-ethylene Dioxythiophene)/poly(styrenesulfonate) And Paam

    No full text
    This paper reports on the effects of poly(3,4-ethylene dioxythiophene)/ poly(styrenesulfonate) (PEDOT/PSS) entangled in the polyacrylamide (PAAm) network by the formation of a semi-IPN on hydrogel performance. Hydrogel properties were evaluated by scanning electron microscopy, water uptake, compressive load tests, ionic conductance and capacitance measurements. It has been found that the introduction of PEDOT/PSS leads to changes in the hydrogel morphology as compared to that of PAAm hydrogels. In addition, PAAm networks with good mechanical properties have been obtained. The presence of PEDOT/PSS increased the ionic conductance of swollen semi-IPN hydrogels substantially. Electrochemical experiments demonstrated that PAAm-PEDOT/PSS hydrogel is electrochemically stable and presents reversible responses to electrochemical stimuli. © 2005 Elsevier Ltd. All rights reserved.252158165Bell, C.L., Peppas, N.A., Biomedical membranes from hydrogels and interpolymer complexes (1995) Biopolymers II Advances in Polymer Science, 22, pp. 125-175Hoffman, A.S., Hydrogels for biomedical applications (2002) Advanced Drug Delivery Reviews, 54, pp. 3-12Buchholz, F.L., Graham, A.T., (1997) Modern Superabsorbent Polymer Technology, , Wiley-VCH New YorkWieczorek, W., Fldrjanczyk, Z., Stevens, J.R., Proton conducting polymer gels based on a polyacrylamide matrix (1995) Electrochimica Acta, 40, pp. 2327-2330Siddhanta, S.K., Gangopadhyay, R., Conducting polymer gel: Formation of a novel semi-IPN from polyaniline and crosslinked poly (2-acrylamido-2-methyl propanesulphonicacid) (2005) Polymer, 46, pp. 2993-3000Micic, M., Zheng, Y., Moy, V., Zhang, X.-H., Andreopoulos, F.M., Leblanc, R.M., Comparative studies of surface topography and mechanical properties of a new, photo-switchable PEG-based hydrogel (2003) Colloids and Surfaces B: Biointerfaces, 27, pp. 147-158Badot, J.C., Baffier, N., Ionic-conductivity and dielectric-properties of vanadium pentoxide xerogels (1992) Journal of Materials Chemistry, 11, pp. 1167-1174Zhang, W.B., Lu, W.W., Li, X., Zhu, D., De Yao, K., Wang, Q., A rapid temperature responsive sol-gel reversible poly(N- isopropylacrylamide)-g-methylcellulose copolymer hydrogel (2004) Biomaterials, 25, pp. 3005-3012Herber, S., Olthuis, W., Bergveld, P., A swelling hydrogel-based PCO2 sensor (2003) Sensors and Actuators B - Chemical, 91, pp. 378-382Hinkley, J.A., Morgret, L.D., Gehrke, S.H., Tensile properties of two responsive hydrogels (2004) Polymer, 45, pp. 8837-8843Muzzarelli, C., Tosi, G., Francescangeli, O., Muzzarelli, R.A.A., Alkaline chitosan solutions (2003) Carbohydrate Research, 338, pp. 2247-2255Elliott, J.E., MacDonald, M., Nie, J., Bowman, C.N., Structure and swelling of poly(acrylic acid) hydrogels: Effect of pH, ionic strength, and dilution on the crosslinked polymer structure (2004) Polymer, 45, pp. 1503-1510Kim, S.J., Kim, H.I.I., Park, S.J., Kim, S.I., Shape change characteristics of polymer hydrogel based on polyacrylic acid/poly(vinyl sulfonic acid) in electric fields (2004) Sensors and Actuators A - Physica, 115, pp. 146-150Kostko, A.F., Chen, T., Payne, G.F., Anisimov, M.A., Dynamic light-scattering monitoring of a transient biopolymer gel (2003) Physica A - Statistical Mechanics and Its Applications, 323, pp. 124-138Akihiko, K., Hideki, F., Preparation of thermo-sensitive magnetic hydrogel microspheres and application to enzyme immobilization (1997) Journal of Fermentation and Bioengineering, 84, pp. 337-341Zukowska, G., Williams, J., Stevens, J.R., Jeffrey, K.R., Lewera, A., Kulesza, P.J., The application of acrylic monomers with acidic groups to the synthesis of proton-conducting polymer gels (2004) Solid State Ionics, 167, pp. 123-130Kang, C., Shin, H., Zhang, Y., Heller, A., Deactivation of bilirubin oxidase by a product of the reaction of urate and O2 (2004) Bioelectrochemistry, 65, pp. 83-88Zhang, X.Z., Wu, D.Q., Chu, C.C., Synthesis, characterization and controlled drug release of thermosensitive IPN-PNIPAAm hydrogels (2004) Biomaterials, 25, pp. 3793-3805Richter, A., Howitz, S., Kuckling, D., Arndt, K.F., Influence of volume phase transition phenomena on the behavior of hydrogel-based valves (2004) Sensors and Actuators B - Chemical, 99, pp. 451-458Roth, E.A., Xu, T., Das, M., Gregory, C., Hickman, J.J., Boland, T., Inkjet printing for high-throughput cell patterning (2004) Biomaterials, 25, pp. 3707-3715Muniz, E.C., Geuskens, G., Compressive elastic modulus of polyacrylamide hydrogels and semi-IPNs with poly(N-isopropylacrylamide) (2001) Macromolecules, 34, pp. 4480-4484Ferruzzi, G.G., Pan, N., Casey, W.H., Mechanical properties of gellan and polyacrylamide gels with implications for soil stabilization (2000) Soil Science, 165, pp. 778-792Gutowska, A., Bae, Y.H., Jacobs, H., Feijen, J., Kim, S.W., Thermosensitive interpenetrating polymer networks - Synthesis, characterization, and macromolecular release (1994) Macromolecules, 27, pp. 4167-4175Huglin, M.B., Rehab, M.M.A.M., Zakaria, M.B., Thermodynamic interactions in copolymeric hydrogels (1986) Macromolecules, 19, pp. 2986-2991Girotto, E.M., Santos, I.A., Medidas de resistividade elétrica DC em sólidos: Como efetuá-las corretamente (2002) Química Nova, 25, pp. 639-642Peppas, N.A., Bures, P., Leobandung, W., Ichikawa, H., Hydrogels in pharmaceutical formulations (2000) European Journal of Pharmaceutics and Biopharmaceutics, 50, pp. 27-46Callister, W.D., (1999) Materials Science and Engineering: An Introduction, , fifth ed. Wiley New Yor
    corecore