4,449 research outputs found
Comparison and relative utility of inequality measurements: as applied to Scotland’s child dental health
This study compared and assessed the utility of tests of inequality on a series of very large population caries datasets. National cross-sectional caries datasets for Scotland’s 5-year-olds in 1993/94 (n = 5,078); 1995/96 (n = 6,240); 1997/98 (n = 6,584); 1999/00 (n = 6,781); 2002/03 (n = 9,747); 2003/04 (n = 10,956); 2005/06 (n = 10,945) and 2007/08 (n = 12,067) were obtained. Outcomes were based on the d3mft metric (i.e. the number of decayed, missing and filled teeth). An area-based deprivation category (DepCat) measured the subjects’ socioeconomic status (SES). Simple absolute and relative inequality, Odds Ratios and the Significant Caries Index (SIC) as advocated by the World Health Organization were calculated. The measures of complex inequality applied to data were: the Slope Index of Inequality (absolute) and a variety of relative inequality tests i.e. Gini coefficient; Relative Index of Inequality; concentration curve; Koolman and Doorslaer’s transformed Concentration Index; Receiver Operator Curve and Population Attributable Risk (PAR). Additional tests used were plots of SIC deciles (SIC10) and a Scottish Caries Inequality Metric (SCIM10). Over the period, mean d3mft improved from 3.1(95%CI 3.0–3.2) to 1.9(95%CI 1.8–1.9) and d3mft = 0% from 41.1(95%CI 39.8–42.3) to 58.3(95%CI 57.8–59.7). Absolute simple and complex inequality decreased. Relative simple and complex inequality remained comparatively stable. Our results support the use of the SII and RII to measure complex absolute and relative SES inequalities alongside additional tests of complex relative inequality such as PAR and Koolman and Doorslaer’s transformed CI. The latter two have clear interpretations which may influence policy makers. Specialised dental metrics (i.e. SIC, SIC10 and SCIM10) permit the exploration of other important inequalities not determined by SES, and could be applied to many other types of disease where ranking of morbidity is possible e.g. obesity. More generally, the approaches described may be applied to study patterns of health inequality affecting worldwide populations
Breech Presentation: Vaginal Versus Cesarean Delivery, Which Intervention Leads to the Best Outcomes?
The best route of delivery for the term breech fetus is still controversial. We aim to compare maternal and neonatal outcomes between vaginal and cesarean term breech deliveries.info:eu-repo/semantics/publishedVersio
SU(3) Mixing for Excited Mesons
The SU(3)-flavor symmetry breaking and the quark-antiquark annihilation
mechanism are taken into account for describing the singlet-octet mixing for
several nonets assigned by Particle Data Group(PDG). This task is approached
with the mass matrix formalism
Topological phase-fluctuations, amplitude fluctuations, and criticality in extreme type-II superconductors
We study the effect of critical fluctuations on the phase diagram in
extreme type-II superconductors in zero and finite magnetic field using
large-scale Monte Carlo simulations on the Ginzburg-Landau model in a frozen
gauge approximation. We show that a vortex-loop unbinding gives a correct
picture of the zero field superconducting-normal transition even in the
presence of amplitude fluctuations, which are far from being critical at .
We extract critical exponents of the dual model by studying the topological
excitations of the original model. From the vortex-loop distribution function
we extract the anomalous dimension of the dual field , and
conclude that the charged Ginzburg-Landau model and the neutral 3DXY model
belong to different universality classes. We find are two distinct scaling
regimes for the vortex-line lattice melting line: a high-field scaling regime
and a distinct low-field 3DXY critical scaling regime. We also find indications
of an abrupt change in the connectivity of the vortex-tangle in the vortex
liquid along a line . This is the finite field counter-part of
the zero-field vortex-loop blowout. Which at low enough fields appears to
coincide with . Here, a description of the vortex system only in terms of
field induced vortex lines is inadequate at and above the VLL melting
temperature.Comment: 30 pages, 14 figure
Apresentação Pélvica: Parto Vaginal Versus Cesariana, Qual a Melhor Intervenção?
INTRODUCTION:
The best route of delivery for the term breech fetus is still controversial. We aim to compare maternal and neonatal outcomes between vaginal and cesarean term breech deliveries.
MATERIAL AND METHODS:
Multicentric retrospective cohort study of singleton term breech fetuses delivered vaginally or by elective cesarean section from January 2012 - October 2014. Primary outcomes were maternal and neonatal morbidity or mortality.
RESULTS:
Sixty five breech fetuses delivered vaginally were compared to 1262 delivered by elective cesarean. Nulliparous women were more common in the elective cesarean group (69.3% vs 24.6%; p < 0.0001). Gestational age at birth was significantly lower in the vaginal delivery group (38 ± 1 weeks vs 39 ± 0.8 weeks; p = 0.0029) as was birth weight (2928 ± 48.4 g vs 3168 ± 11.3 g; p < 0.0001). Apgar scores below seven on the first and fifth minutes were more likely in the vaginal delivery group (1st minute: 18.5% vs 5.9%; p = 0.0006; OR 3.6 [1.9 - 7.0]; 5th minute: 3.1% vs 0.2%; p = 0.0133; OR 20.0 [2.8 - 144.4]), as was fetal trauma (3.1% vs 0.3%: p = 0.031; OR 9.9 [1.8-55.6]). Neither group had cases of fetal acidemia. Admission to the Neonatal Intensive Care Unit, maternal postpartum hemorrhage and the incidence of other obstetric complications were similar between groups.
DISCUSSION:
Although vaginal breech delivery was associated with lower Apgar scores and higher incidence of fetal trauma, overall rates of such events were low. Admission to the neonatal intensive care unit and maternal outcomes were similar.
CONCLUSION:
Both delivery routes seem equally valid, neither posing high maternal or neonatal complications' incidence.info:eu-repo/semantics/publishedVersio
Techniques for Arbuscular Mycorrhiza Inoculum Reduction
It is well established that arbuscular mycorrhizal (AM) fungi can play a significant role in sustainable crop production and environmental conservation. With the increasing awareness of the ecological significance of mycorrhizas and their diversity, research needs to be directed away from simple records of their occurrence or casual speculation of their function (Smith and Read 1997). Rather, the need is for empirical studies and investigations of the quantitative aspects of the distribution of different types and their contribution to the function of ecosystems.
There is no such thing as a fungal effect or a plant effect, but there is an interaction between both symbionts. This results from the AM fungi and plant community size and structure, soil and climatic conditions, and the interplay between all these factors (Kahiluoto et al. 2000). Consequently, it is readily understood that it is the problems associated with methodology that limit our understanding of the functioning and effects of AM fungi within field communities.
Given the ubiquous presence of AM fungi, a major constraint to the evaluation of the activity of AM colonisation has been the need to account for the indigenous soil native inoculum. This has to be controlled (i.e. reduced or eliminated) if we are to obtain a true control treatment for analysis of arbuscular mycorrhizas in natural substrates. There are various procedures possible for achieving such an objective, and the purpose of this chapter is to provide details of a number of techniques and present some evaluation of their advantages and disadvantages.
Although there have been a large number of experiments to investigated the effectiveness of different sterilization procedures for reducing pathogenic soil fungi, little information is available on their impact on beneficial organisms such as AM fungi. Furthermore, some of the techniques have been shown to affect physical and chemical soil characteristics as well as eliminate soil microorganisms that can interfere with the development of mycorrhizas, and this creates difficulties in the interpretation of results simply in terms of possible mycorrhizal activity.
An important subject is the differentiation of methods that involve sterilization from those focussed on indigenous inoculum reduction. Soil sterilization aims to destroy or eliminate microbial cells while maintaining the existing chemical and physical characteristics of the soil (Wolf and Skipper 1994). Consequently, it is often used for experiments focussed on specific AM fungi, or to establish a negative control in some other types of study. In contrast, the purpose of inoculum reduction techniques is to create a perturbation that will interfere with mycorrhizal formation, although not necessarily eliminating any component group within the inoculum. Such an approach allows the establishment of different degrees of mycorrhizal formation between treatments and the study of relative effects.
Frequently the basic techniques used to achieve complete sterilization or just an inoculum reduction may be similar but the desired outcome is accomplished by adjustments of the dosage or intensity of the treatment. The ultimate choice of methodology for establishing an adequate non-mycorrhizal control depends on the design of the particular experiments, the facilities available and the amount of soil requiring treatment
Extreme Type-II Superconductors in a Magnetic Field: A Theory of Critical Fluctuations
A theory of critical fluctuations in extreme type-II superconductors
subjected to a finite but weak external magnetic field is presented. It is
shown that the standard Ginzburg-Landau representation of this problem can be
recast, with help of a novel mapping, as a theory of a new "superconductor", in
an effective magnetic field whose overall value is zero, consisting of the
original uniform field and a set of neutralizing unit fluxes attached to
fluctuating vortex lines. The long distance behavior is related to
the anisotropic gauge theory in which the original magnetic field plays the
role of "charge". The consequences of this "gauge theory" scenario for the
critical behavior in high temperature superconductors are explored in detail,
with particular emphasis on questions of 3D XY vs. Landau level scaling,
physical nature of the vortex "line liquid" and the true normal state, and
fluctuation thermodynamics and transport. A "minimal" set of requirements for
the theory of vortex-lattice melting in the critical region is also proposed
and discussed.Comment: 28 RevTeX pages, 4 .ps figures; appendix A added, additional
references, streamlined Secs. IV and V in response to referees' comment
Agronomic Management of Indigenous Mycorrhizas
Many of the advantages conferred to plants by arbuscular mycorrhiza (AM) are associated to the ability of AM plants to explore a greater volume of soil through the extraradical mycelium. Sieverding (1991) estimates that for each centimetre of colonized root there is an increase of 15 cm3 on the volume of soil explored, this value can increase to 200 cm3 depending on the circumstances. Due to the enhancement of the volume of soil explored and the ability of the extraradical mycelium to absorb and translocate nutrients to the plant, one of the most obvious and important advantages resulting from mycorrhization is the uptake of nutrients. Among of which the ones that have immobilized forms in soil, such as P, assume particular significance. Besides this, many other benefits are recognized for AM plants (Gupta et al, 2000): water stress alleviation (Augé, 2004; Cho et al, 2006), protection from root pathogens (Graham, 2001), tolerance to toxic heavy metals and phytoremediation (Audet and Charest, 2006; Göhre and Paszkowski, 2006), tolerance to adverse conditions such as very high or low temperature, high salinity (Sannazzaro et al, 2006), high or low pH (Yano and Takaki, 2005) or better performance during transplantation shock (Subhan et al, 1998). The extraradical hyphae also stabilize soil aggregates by both enmeshing soil particles (Miller e Jastrow, 1992) and producing a glycoprotein, golmalin, which may act as a glue-like substance to adhere soil particles together (Wright and Upadhyaya, 1998).
Despite the ubiquous distribution of mycorrhizal fungi (Smith and Read, 2000) and only a relative specificity between host plants and fungal isolates (McGonigle and Fitter, 1990), the obligate nature of the symbiosis implies the establishment of a plant propagation system, either under greenhouse conditions or in vitro laboratory propagation. These techniques result in high inoculum production costs, which still remains a serious problem since they are not competitive with production costs of phosphorus fertilizer. Even if farmers understand the significance of sustainable agricultural systems, the reduction of phosphorus inputs by using AM fungal inocula alone cannot be justified except, perhaps, in the case of high value crops (Saioto and Marumoto, 2002). Nurseries, high income horticulture farmers and no-agricultural application such as rehabilitation of degraded or devegetated landscapes are examples of areas where the use of commercial inoculum is current. Another serious problem is quality of commercial available products concerning guarantee of phatogene free content, storage conditions, most effective application methods and what types to use. Besides the information provided by suppliers about its inoculum can be deceiving, as from the usually referred total counts, only a fraction may be effective for a particular plant or in specific soil conditions. Gianinazzi and Vosátka (2004) assume that progress should be made towards registration procedures that stimulate the development of the mycorrhizal industry.
Some on-farm inoculum production and application methods have been studied, allowing farmers to produce locally adapted isolates and generate a taxonomically diverse inoculum (Mohandas et al, 2004; Douds et al, 2005). However the inocula produced this way are not readily processed for mechanical application to the fields, being an obstacle to the utilization in large scale agriculture, especially row crops, moreover it would represent an additional mechanical operation with the corresponding economic and soil compaction costs.
It is well recognized that inoculation of AM fungi has a potential significance in not only sustainable crop production, but also environmental conservation. However, the status quo of inoculation is far from practical technology that can be widely used in the field. Together a further basic understanding of the biology and diversity of AM fungi is needed (Abbott at al, 1995; Saito and Marumoto, 2002).
Advances in ecology during the past decade have led to a much more detailed understanding of the potential negative consequences of species introductions and the potential for negative ecological consequences of invasions by mycorrhizal fungi is poorly understood. Schwartz et al, (2006) recommend that a careful assessment documenting the need for inoculation, and the likelihood of success, should be conducted prior to inoculation because inoculations are not universally beneficial.
Agricultural practices such as crop rotation, tillage, weed control and fertilizer apllication all produce changes in the chemical, physical and biological soil variables and affect the ecological niches available for occupancy by the soil biota, influencing in different ways the symbiosis performance and consequently the inoculum development, shaping changes and upset balance of native populations. The molecular biology tools developed in the latest years have been very important for our perception of these changes, ensuing awareness of management choice implications in AM development.
In this context, for extensive farming systems and regarding environmental and economic costs, the identification of agronomic management practices that allow controlled manipulation of the fungal community and capitalization of AM mutualistic effect making use of local inoculum, seem to be a wise option for mycorrhiza promotion and development of sustainable crop production
SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron
We address whether T cell responses induced by different vaccine platforms (mRNA-1273, BNT162b2, Ad26.COV2.S, and NVX-CoV2373) cross-recognize early SARS-CoV-2 variants. T cell responses to early variants were preserved across vaccine platforms. By contrast, significant overall decreases were observed for memory B cells and neutralizing antibodies. In subjects 3c6 months post-vaccination, 90% (CD4+) and 87% (CD8+) of memory T cell responses were preserved against variants on average by AIM assay, and 84% (CD4+) and 85% (CD8+) preserved against Omicron. Omicron RBD memory B cell recognition was substantially reduced to 42% compared with other variants. T cell epitope repertoire analysis revealed a median of 11 and 10 spike epitopes recognized by CD4+ and CD8+ T cells, with average preservation > 80% for Omicron. Functional preservation of the majority of T cell responses may play an important role as a second-level defense against diverse variants
Discovery of antibiotic (E)-3-(3-carboxyphenyl)-2-(4-cyanostyryl)quinazolin-4(3 H)-one
© 2015 American Chemical Society. In the face of the clinical challenge posed by resistant bacteria, the present needs for novel classes of antibiotics are genuine. In silico docking and screening, followed by chemical synthesis of a library of quinazolinones, led to the discovery of (E)-3-(3-carboxyphenyl)-2-(4-cyanostyryl)quinazolin-4(3H)-one (compound 2) as an antibiotic effective in vivo against methicillin-resistant Staphylococcus aureus (MRSA). This antibiotic impairs cell-wall biosynthesis as documented by functional assays, showing binding of 2 to penicillin-binding protein (PBP) 2a. We document that the antibiotic also inhibits PBP1 of S. aureus, indicating a broad targeting of structurally similar PBPs by this antibiotic. This class of antibiotics holds promise in fighting MRSA infections.Peer Reviewe
- …