291 research outputs found

    Levulinic acid production from the green macroalgae chaetomorpha linum and valonia aegagropila harvested in the orbetello lagoon

    Get PDF
    In recent years, the replacement of fossil resources with renewable ones has received great interest, especially as regards the production of new valuable bio-products and bio-fuels, in order to replace the traditional petroleum-based ones. In this context, the exploitation of waste biomasses into added-value biochemicals is strongly encouraged. Among these ones, the algae ones are attracting considerable attention, in particular macroalgae which cause eutrophication problems in estuaries and lagoons, due to the drastic reduction of dissolved oxygen during their decomposition. This is true for Orbetello lagoon (Italy), where a large amount of algal biomasses is removed every year through an expensive practice, with consequent environmentally serious disposal problems. In this work, for the first time, the acid-catalyzed conversion of two different macroalgae harvested in Orbetello lagoon, Chaetomorpha linum (Muller) Kutzing and Valonia aegagropila C. Agardh, into levulinic acid was studied and optimized, adopting a one-pot hydrothermal treatment, under microwave heating and in the presence of aqueous diluted mineral acids, H2SO4 and HCl. Levulinic acid is a versatile platform chemical, classified by the United States Department of Energy as one of the top-12 promising bio-based building blocks. The effect of the main reaction parameters to give levulinic acid was investigated and discussed, in particular the type and concentration of the acid catalyst, the temperature and the reaction time. The highest levulinic acid yields of 19 wt% for Chaetomorpha linum and 16 wt% for Valonia aegagropila, calculated respect to the weight of the starting dried biomass, were reached. The achieved results are very promising and confirm the significant potential of these green algae as renewable starting feedstocks for levulinic acid production

    Tunable HMF hydrogenation to furan diols in a flow reactor using Ru/C as catalyst

    Get PDF
    5-hydroxymethylfurfural (HMF), accessible from various feedstocks, represents an important renewable platform-chemical, precursor for valuable biofuels and bio-based chemicals. In this work, the continuous hydrogenation of an aqueous solution of HMF to give strategic monomers, 2,5-bis(hydroxymethyl)furan (BHMF) and 2,5-bis(hydroxymethyl)tetrahydrofuran (BHMTHF) was investigated in a continuous flow reactor adopting a commercial Ru/C (5 wt%) as catalyst. The influence of the main process variables on products yield and selectivity was studied and optimized. The highest BHMF and BHMTHF yields of 87.9 and 93.7 mol%, respectively, were achieved by tuning the catalyst contact time, keeping all other variables constant (temperature, pressure, hydrogen flow rate, initial HMF concentration). Intraparticle diffusion limitation for hydrogen and HMF was shown to occur at some of the tested conditions by performing the HMF hydrogenation with different catalyst particle sizes, confirmed by calculations. Constant catalyst activity was observed up to 6 h time-on-stream and then gradually reduced. Fresh and spent catalyst characterization showed no significant sintering and negligible leaching of ruthenium during time-on-stream. A decrease of the specific surface area was observed, mainly due to humin deposition which is likely the reason for catalyst deactivation. Catalyst performance could be restored to initial values by a thorough washing of the catalyst

    Biomass-derived catalysts: synthesis and characterization of hydrochars and pyrochars

    Get PDF
    Lignocellulosic biomass is one of the more important renewable sources and it will play a strategic role in many future markets, taking into consideration that a renewable energy share of 32% is binding at the European level by 2030. Deconstruction of lignocellulosic biomass can be carried out via hydrothermal processes and, among them, hydrothermal carbonization (HTC) represents a versatile process, which promotes the progressively deoxygenation of the biomass, under relatively mild reaction conditions. The obtained solid-rich product, called hydrochar, can be used in a wide range of applications, such as adsorption, energy storage, CO2 sequestration, catalysis etc. In this last field, within the project PRIN 2020 LEVANTE “LEvulinic acid Valorization through Advanced Novel Technologies” (2020CZCJN7), different hydrochars have been synthesized starting from cellulose and the effects of the main reaction parameters have been investigated employing statistical modelling. Under the selected set of processing parameters, the yield of hydrochars was in the range 38-48 wt%, with a carbon content of 60-70 wt% and corresponding higher heating values amounting to 17-27 MJ/kg, confirming the successful conversion of cellulose into a carbonaceous material. Finally, on the basis of final applications, also pyrochars have been prepared starting from the optimal hydrochars, in order to increase the aromatization degree and the surface areas. All the synthesized hydrochars and pyrochars will be further functionalized and employed, as acid catalysts, for the valorization of levulinic acid, in particular for its conversion to diphenolic acid, in agreement with the objectives of the project LEVANTE

    Chemical and enzymatic hydrolysis of waste wheat bran to sugars and their simultaneous biocatalytic conversion to valuable carotenoids and lipids

    Get PDF
    Defatted wheat bran, an industrial waste of the food chain, represents a strategic renewable material for modern biorefinery schemes. Through a combination of chemical and biological catalysis, a cascade process was developed to produce high-value fine chemicals, such as carotenoids and lipids, from polysaccharide fraction. Due to the low lignin content and suitable particle size of defatted wheat bran, pretreatment steps are unnecessary, allowing the direct enzymatic or chemical hydrolysis of polysaccharide components (glucan, xylan, and arabinan) to give fermentable sugars. Regarding the biocatalytic approach, the optimisation of the main reaction parameters, such as enzyme dosage (15, 30, 45, 60 FPU Cellic (R) CTec 3 HS/g glucan) and biomass loading (5, 10, 15, 20 wt%), was performed to improve the monosaccharide yield. Regarding the chemical route, a microwaveassisted FeCl3-catalysed approach was optimised in terms of catalyst amount (1.0, 1.3, 1.6 wt%) and reaction time (2.5, 5, 10 min) to maximise the sugar yield, minimizing the formation of furanic derivatives which are strong inhibitors for the subsequent fermentation step. The biological conversion of sugars obtained by both enzymatic and chemical routes into carotenoids and lipids was then performed by adopting the commercial yeast Rhodosporidium toruloides DSM 4444. The simultaneous production of carotenoids and lipids was optimised by investigating the effect of the C/N ratio in the fermentation medium. Under the optimised process conditions (C/ N 60), by fermenting hydrolysate obtained by chemical and enzymatic routes, carotenoid productions of 120 and 180 mg/L and lipids productions of 5.2 and 3.5 g/L were achieved, respectively. The highest carotenoids cell content achieved in this study (14.8 mg/g) is about 5 times higher than the maximum value reported in the literature to date for this yeast. Moreover, Rhodosporidium toruloides achieved the complete conversion of sugars into desired bioproducts for both the biomass hydrolysates demonstrating the effectiveness of the two different catalytic approaches adopted for biomass hydrolysis

    Sustainable exploitation of residual cynara cardunculus l. To levulinic acid and n-butyl levulinate

    Get PDF
    Hydrolysis and butanolysis of lignocellulosic biomass are efficient routes to produce two valuable bio-based platform chemicals, levulinic acid and n-butyl levulinate, which find increasing applications in the field of biofuels and for the synthesis of intermediates for chemical and pharmaceutical industries, food additives, surfactants, solvents and polymers. In this research, the ac-id-catalyzed hydrolysis of the waste residue of Cynara cardunculus L. (cardoon), remaining after seed removal for oil exploitation, was investigated. The cardoon residue was employed as-received and after a steam-explosion treatment which causes an enrichment in cellulose. The effects of the main reaction parameters, such as catalyst type and loading, reaction time, temperature and heat-ing methodology, on the hydrolysis process were assessed. Levulinic acid molar yields up to about 50 mol % with levulinic acid concentrations of 62.1 g/L were reached. Moreover, the one-pot bu-tanolysis of the steam-exploded cardoon with the bio-alcohol n-butanol was investigated, demon-strating the direct production of n-butyl levulinate with good yield, up to 42.5 mol %. These results demonstrate that such residual biomass represent a promising feedstock for the sustainable production of levulinic acid and n-butyl levulinate, opening the way to the complete exploitation of this crop

    Multi-step exploitation of raw arundo donax L. For the selective synthesis of second-generation sugars by chemical and biological route

    Get PDF
    Lignocellulosic biomass represents one of the most important feedstocks for future biorefineries, being a precursor of valuable bio-products, obtainable through both chemical and biological conversion routes. Lignocellulosic biomass has a complex matrix, which requires the careful development of multi-step approaches for its complete exploitation to value-added compounds. Based on this perspective, the present work focuses on the valorization of hemicellulose and cellulose fractionsof giant reed (Arundo donax L.) to give second-generation sugars, minimizing the formation of reaction by-products. The conversion of hemicellulose to xylose was undertaken in the presence of the heterogeneous acid catalyst Amberlyst-70 under microwave irradiation. The effect of the main reaction parameters, such as temperature, reaction time, catalyst, and biomass loadings on sugars yield was studied, developing a high gravity approach. Under the optimised reaction conditions (17 wt% Arundo donax L. loading, 160 °C, Amberlyst-70/Arundo donax L. weight ratio 0.2 wt/wt), the xylose yield was 96.3 mol%. In the second step, the cellulose-rich solid residue was exploited through the chemical or enzymatic route, obtaining glucose yields of32.5 and56.2 mol%, respectively. This work proves the efficiency of this innovative combination of chemical and biological catalytic approaches, for the selective conversion of hemicellulose and cellulose fractions of Arundo donax L. to versatile platform products

    Sustainable exploitation of paper mill wastes: a resource to re-use in the paper factory

    Get PDF
    In the papermaking industry, billions of tonnes of paper mill wastes are globally produced as wastes every year. These include cellulosic and inorganic sludges, which are traditionally landfilled, leading to environmental and economic issues. For these reasons, it is urgent to develop new sustainable strategies to exploit these fractions. Up to now, these sludges have been exploited i) for land application (as soil amendment/substrate), ii) for energy recovery and iii) for the production of bio-composites. However, the above possibilities involve the direct use of the bulk wastes, without fractionating/exploiting each feedstock component. In the perspective of the valorisation of the different components, the present investigation has considered different strategies: i) a thermal treatment, ii) an alkaline and iii) a mechanical one, aimed at the fractionation and recovery of the two main components of cellulosic and inorganic sludge, cellulose and calcium carbonate, respectively, that could be advantageously reused within the same papermaking process

    Biomass ethanolysis: process optimization and performances of ethyl levulinate as diesel blendstock

    Get PDF
    Biomass represents a key asset for renewable energy production in the context of the more and more pressing energetic transition. Moreover, at the present, the issue of how to store a convenient amount of energy on board of electric vehicles is still a challenge and electric vehicles perspectives are limited to passenger cars and very small-range trucks, significant amount of time being necessary to define the eventual appropriate electric storage system to be employed in heavy transport, as well in aviation and shipping. In this context alkyl levulinates represent a concrete perspective for partial replacement of fossil fuel with renewable blendstocks. In particular, ethyl levulinate (EL) production by direct acid-catalyzed biomass ethanolysis was studied in order to investigate and optimize this one-step process which involves only renewable starting materials (biomass and bioethanol). In this perspective, the role of the main reaction parameters as the substrate nature and loading, type of the acid catalyst and its concentration, reaction temperature and duration were studied. EL was tested up to high concentrations in a mixture with diesel fuel in a small single-cylinder air-cooled diesel engine, to verify the engine and emission performances of the different blend compositions respect to those ascertained with a conventional diesel fuel

    Design approach for the sustainable synthesis of sulfonated biomass-derived hydrochars and pyrochars for the production of 5-(hydroxymethyl)furfural

    Get PDF
    The sustainable synthesis of carbon-based sulfonated acid catalysts from biomass is of paramount importance from the perspective of sustainability. However, the traditional pyrolysis method leads to low solid yields and poor carbon stability. A cascade synthesis is here proposed, combining hydrothermal carbonization and pyrolysis, to produce a “high-quality” carbon-based precursor, followed by its sulfonation to increase the pristine acidity. The proposed multi-step preparation is effective when each step is optimized, primarily the hydrothermal carbonization, which should be carefully optimized. A chemometric approach was employed to optimize the hydrochar synthesis, using microcrystalline cellulose as starting feedstock. The identified optimal reaction conditions were applied to the hydrothermal carbonization of hazelnut shells, which is a more complex but cheaper feedstock, and the obtained hydrochars were pyrolyzed to produce pyrochars. The most promising chars were sulfonated and tested as heterogeneous acid catalysts in the aqueous conversion of fructose to 5-(hydroxymethyl)furfural, a promising platform chemical of great industrial interest, obtaining maximum yields of about 40 mol%. These promising results pave the way for the use of such wastes as efficient acid catalysts for the synthesis of 5-(hydroxymethyl)furfural, contributing to ensure the biomass circular exploitation
    corecore