24 research outputs found

    The Seoul National University AGN Monitoring Project. II. BLR Size and Black Hole Mass of Two AGNs

    Get PDF
    Active galactic nuclei (AGNs) show a correlation between the size of the broad line region and the monochromatic continuum luminosity at 5100 Å, allowing black hole mass estimation based on single-epoch spectra. However, the validity of the correlation is yet to be clearly tested for high-luminosity AGNs. We present the first reverberation mapping results of the Seoul National University AGN Monitoring Project (SAMP), which is designed to focus on luminous AGNs for probing the high end of the size–luminosity relation. We report time lag measurements of two AGNs, namely, 2MASS J10261389+5237510 and SDSS J161911.24+501109.2, using the light curves obtained over an ∼1000 days period with an average cadence of 10 and 20 days, respectively, for photometry and spectroscopy monitoring. Based on a cross-correlation analysis and Hβ line width measurements, we determine the Hβ lag as and days in the observed frame, and black hole mass as and , respectively, for 2MASS J1026 and SDSS J1619

    The Seoul National University AGN Monitoring Project. IV. Hα Reverberation Mapping of Six AGNs and the Hα Size–Luminosity Relation

    Get PDF
    The broad-line region (BLR) size–luminosity relation has paramount importance for estimating the mass of black holes in active galactic nuclei (AGNs). Traditionally, the size of the Hβ BLR is often estimated from the optical continuum luminosity at 5100 Å, while the size of the Hα BLR and its correlation with the luminosity is much less constrained. As a part of the Seoul National University AGN Monitoring Project, which provides 6 yr photometric and spectroscopic monitoring data, we present our measurements of the Hα lags of high-luminosity AGNs. Combined with the measurements for 42 AGNs from the literature, we derive the size–luminosity relations of the Hα BLR against the broad Hα and 5100 Å continuum luminosities. We find the slope of the relations to be 0.61 ± 0.04 and 0.59 ± 0.04, respectively, which are consistent with the Hβ size–luminosity relation. Moreover, we find a linear relation between the 5100 Å continuum luminosity and the broad Hα luminosity across 7 orders of magnitude. Using these results, we propose a new virial mass estimator based on the Hα broad emission line, finding that the previous mass estimates based on scaling relations in the literature are overestimated by up to 0.7 dex at masses lower than 107M⊙

    The Seoul National University AGN Monitoring Project IV: Hα\alpha reverberation mapping of 6 AGNs and the Hα\alpha Size-Luminosity Relation

    Full text link
    The broad line region (BLR) size-luminosity relation has paramount importance for estimating the mass of black holes in active galactic nuclei (AGNs). Traditionally, the size of the Hβ\beta BLR is often estimated from the optical continuum luminosity at 5100\angstrom{} , while the size of the Hα\alpha BLR and its correlation with the luminosity is much less constrained. As a part of the Seoul National University AGN Monitoring Project (SAMP) which provides six-year photometric and spectroscopic monitoring data, we present our measurements of the Hα\alpha lags of 6 high-luminosity AGNs. Combined with the measurements for 42 AGNs from the literature, we derive the size-luminosity relations of Hα\alpha BLR against broad Hα\alpha and 5100\angstrom{} continuum luminosities. We find the slope of the relations to be 0.61±0.040.61\pm0.04 and 0.59±0.040.59\pm0.04, respectively, which are consistent with the \hb{} size-luminosity relation. Moreover, we find a linear relation between the 5100\angstrom{} continuum luminosity and the broad Hα\alpha luminosity across 7 orders of magnitude. Using these results, we propose a new virial mass estimator based on the Hα\alpha broad emission line, finding that the previous mass estimates based on the scaling relations in the literature are overestimated by up to 0.7 dex at masses lower than 10710^7~M_{\odot}.Comment: Accepted for publication in ApJ (Jun. 25th, 2023). 21 pages, 12 figure

    Effects of pseudoephedrine on parameters affecting exercise performance: a meta-analysis

    Get PDF
    Background Pseudoephedrine (PSE), a sympathomimetic drug, commonly used in nasal decongestants, is currently banned in sports by the World Anti-Doping Agency (WADA), as its stimulant activity is claimed to enhance performance. This meta-analysis described the effects of PSE on factors relating to sport performance. Methods All included studies were randomised placebo-controlled trials and were conducted in a double blind crossover fashion. All participants (males and females) were deemed to be healthy. For the primary analysis, standardised mean difference effect sizes (ES) were calculated for heart rate (HR), time trial (TT) performance, rating of perceived exertion, blood glucose, and blood lactate. Results Across all parameters, effects were trivial with the exception of HR, which showed a small positive increase in favour of PSE ingestion (ES = 0.43; 95% confidence interval: − 0.01 to 0.88). However, subgroup analyses revealed important trends. Effect sizes for HR (increase) and TT (quicker) were larger in well-trained (VO2 max (maximal oxygen consumption) ≥ 65 ml/kg/min) and younger (170 mg) resulting in small (ES = − 0.24) and moderate (ES = 0.85) effect sizes respectively for these variables. Conclusions We conclude, however, that the performance benefit of pseudoephedrine is marginal and likely to be less than that obtained from permitted stimulants such as caffeine

    The Seoul National University AGN Monitoring Project. II. BLR Size and Black Hole Mass of Two AGNs

    Get PDF
    Active galactic nuclei (AGNs) show a correlation between the size of the broad line region and the monochromatic continuum luminosity at 5100 Å, allowing black hole mass estimation based on single-epoch spectra. However, the validity of the correlation is yet to be clearly tested for high-luminosity AGNs. We present the first reverberation mapping results of the Seoul National University AGN Monitoring Project (SAMP), which is designed to focus on luminous AGNs for probing the high end of the size─luminosity relation. We report time lag measurements of two AGNs, namely, 2MASS J10261389+5237510 and SDSS J161911.24+501109.2, using the light curves obtained over a ∼1000 days period with an average cadence of 10 and 20 days, respectively, for photometry and spectroscopy monitoring. Based on a cross-correlation analysis and Hβ line width measurements, we determine the Hβ lag as {41.8}-6.0+4.9 and {52.6}-14.7+17.6 days in the observed frame, and black hole mass as {3.65}-0.57+0.49× {10}7{M}ȯ and {23.02}-6.56+7.81× {10}7{M}ȯ , respectively, for 2MASS J1026 and SDSS J1619.</p

    Variability and the size-luminosity relation of the intermediate mass AGN in NGC 4395

    Full text link
    We present the variability study of the lowest-luminosity Seyfert 1 galaxy NGC 4395 based on the photometric monitoring campaigns in 2017 and 2018. Using 22 ground-based and space telescopes, we monitored NGC 4395 with a \sim5 minute cadence during a period of 10 days and obtained light curves in the UV, V, J, H, and K/Ks bands as well as the Hα\alpha narrow-band. The RMS variability is \sim0.13 mag on \emph{Swift}-UVM2 and V filter light curves, decreasing down to \sim0.01 mag on K filter. After correcting for continuum contribution to the Hα\alpha narrow-band, we measured the time lag of the Hα\alpha emission line with respect to the V-band continuum as 5531+27{55}^{+27}_{-31} to 12267+33{122}^{+33}_{-67} min. in 2017 and 4914+15{49}^{+15}_{-14} to 8314+13{83}^{+13}_{-14} min. in 2018, depending on the assumption on the continuum variability amplitude in the Hα\alpha narrow-band. We obtained no reliable measurements for the continuum-to-continuum lag between UV and V bands and among near-IR bands, due to the large flux uncertainty of UV observations and the limited time baseline. We determined the AGN monochromatic luminosity at 5100\AA\ λLλ=(5.75±0.40)×1039ergs1\lambda L_\lambda = \left(5.75\pm0.40\right)\times 10^{39}\,\mathrm{erg\,s^{-1}}, after subtracting the contribution of the nuclear star cluster. While the optical luminosity of NGC 4395 is two orders of magnitude lower than that of other reverberation-mapped AGNs, NGC 4395 follows the size-luminosity relation, albeit with an offset of 0.48 dex (\geq2.5σ\sigma) from the previous best-fit relation of Bentz et al. (2013).Comment: Accepted for publication in ApJ (Feb. 23rd, 2020). 18 pages, 10 figure

    High-performing catalysts for energy-efficient commercial alkaline water electrolysis

    No full text
    ‘Green’ hydrogen produced from water electrolysis powered by renewable energy will play a critical role in the future global energy transition to ‘net zero’ carbon emissions. To this end, intensive efforts are needed to improve the energy efficiency with which green hydrogen can be made and thereby reduce its cost. A key required effort in this respect involves developing the most efficient and durable possible catalysts to facilitate the ‘hydrogen evolution reaction’ (HER) at the cathode and the ‘oxygen evolution reaction’ (OER) at the anode in alkaline water electrolysers. Most work in this regard has focused on improving the activity of catalysts at or around a standard current density of 10 mA cm−2 for both the HER and OER. However, to be practically useful, electrocatalysts must operate efficiently at commercial current densities, which are typically much higher; for example, commercial alkaline water electrolysers routinely operate at current densities of 200-700 mA cm−2. Reviews of such electrocatalysts and their suitability for commercial-scale water electrolysis are rarely reported. This work presents an overview of recent progress in this respect. The most energy efficient and durable electrocatalysts for the HER, the OER, and for overall water splitting, are identified, discussed, and prioritized with a view towards enhancing commercial alkaline water electrolysis. The major challenges involved in their preparation and operation, as well as potential avenues for further performance improvements as reliable, robust electrocatalysts for commercial alkaline electrolysis are also highlighted. The latest work on new technology development in alkaline water splitting is also presented. The high-performing catalysts that are most likely to accelerate the prospects of green hydrogen are listed in a comparative table. A discussion of future directions in this emerging field is also provided
    corecore