23 research outputs found

    Fine sediment reduces vertical migrations of Gammarus pulex (Crustacea: Amphipoda) in response to surface water loss

    Get PDF
    Surface and subsurface sediments in river ecosystems are recognized as refuges that may promote invertebrate survival during disturbances such as floods and streambed drying. Refuge use is spatiotemporally variable, with environmental factors including substrate composition, in particular the proportion of fine sediment (FS), affecting the ability of organisms to move through interstitial spaces. We conducted a laboratory experiment to examine the effects of FS on the movement of Gammarus pulex Linnaeus (Crustacea: Amphipoda) into subsurface sediments in response to surface water loss. We hypothesized that increasing volumes of FS would impede and ultimately prevent individuals from migrating into the sediments. To test this hypothesis, the proportion of FS (1–2 mm diameter) present within an open gravel matrix (4–16 mm diameter) was varied from 10 to 20% by volume in 2.5% increments. Under control conditions (0% FS), 93% of individuals moved into subsurface sediments as the water level was reduced. The proportion of individuals moving into the subsurface decreased to 74% at 10% FS, and at 20% FS no individuals entered the sediments, supporting our hypothesis. These results demonstrate the importance of reducing FS inputs into river ecosystems and restoring FS-clogged riverbeds, to promote refuge use during increasingly common instream disturbances

    Inter- and intraspecific variation of carbon and nitrogen stable isotope ratios in freshwater bivalves

    No full text
    Freshwater bivalves provide important ecosystem functions and services, yet many of their ecological traits such as feeding mechanisms and resource use are largely ignored. In this study, we aimed to evaluate the potential overlap in resource use by bivalve species living in sympatry in European freshwater ecosystems. This was accomplished by analyzing the stable isotope ratios of carbon (C) and nitrogen (N) values of six bivalve species (five native species plus the invasive species Corbicula fluminea) in six distinct aquatic ecosystems. Results showed significant inter- and intraspecific differences in both stable isotope ratios. The interspecific variability suggests differences in the food sources consumed, which can be related to differences in feeding behavior. At the intraspecific level, there was a gradient in the stable isotope ratios from the oligotrophic River Paiva (15N-depleted and 13C-enriched) to the eutrophic Mira Lagoon (15N-enriched and 13C-depleted), suggesting a change in the resources used from benthic to pelagic food sources, respectively, and/or differences in the stable isotopic baseline in each ecosystem. Thus, flexible feeding strategies combined with size selectivity may decrease the possible competition for food sources by native and invasive species living in sympatry.A. Novais was supported by a Ph.D. Grant (SFRH/BD/86463/2012) from the Portuguese Foundation for Science and Technology—FCT through POPH/FSE funds. This study was conducted in the scope of the project ECO-IAS: ecosystem-level impacts of an invasive alien species, funded by FCT and COMPETE funds (contract: PTDC/AAC-AMB/ 116685/2010). This study was also partially supported by the European Regional Development Fund (ERDF) through the COMPETE, under the project ‘‘PEst-C/MAR/LA0015/2011.’’info:eu-repo/semantics/publishedVersio
    corecore