99 research outputs found

    Models of Multifunctional Central Pattern Generators: Polyrhythmic Bursting

    Get PDF
    We demonstrate a motif of three reciprocally inhibitory cells that is able to produce multiple patterns of bursting rhythms. Through the examination of the qualitative geometric structure of two-dimensional maps for phase lag between the cells we reveal the organizing centers of emergent polyrhythmic patterns and their bifurcations, as the asymmetry of the synaptic coupling is varied. The presence of multistability and the types of attractors in the network are shown to be determined by the duty cycle of bursting. This analysis does not require knowledge of the equations that model the system, and so provides a powerful new approach to studying regulatory networks. Thus, the approach is applicable to a variety of biological phenomena beyond motor control

    Blue sky catastrophe in singularly perturbed systems

    Get PDF
    We show that the blue sky catastrophe, which creates a stable periodic orbit whose length increases with no bound, is a typical phenomenon for singularly-perturbed (multi-scale) systems with at least two fast variables. Three distinct mechanisms of this bifurcation are described. We argue that it is behind a transition from periodic spiking to periodic bursting oscillations

    On some mathematical topics in classic synchronization

    Get PDF
    A few mathematical problems arising in the classical synchronization theory are discussed, especially those relating to complex dynamics. The roots of the theory originate in the pioneering experiments by van der Pol and van der Mark, followed by the theoretical studies done by Cartwright and Littlewood. Today we focus specifically on the problem on a periodically forced stable limit cycle emerging from a homoclinic loop to a saddle point. Its analysis allows us to single out the regions of simple and complex dynamics, as well as to yield a comprehensive descriptiob of bifurcational phenomena in the two-parameter case. Of a particular value among ones is the global bifurcation of a saddle-node periodic orbit. For this bifurcation, we prove a number of theorems on birth and breakdown of nonsmooth invariant tori

    Parameter-sweeping techniques for temporal dynamics of neuronal systems: case study of Hindmarsh-Rose model

    Get PDF
    Background: Development of effective and plausible numerical tools is an imperative task for thorough studies of nonlinear dynamics in life science applications. Results: We have developed a complementary suite of computational tools for twoparameter screening of dynamics in neuronal models. We test a ‘brute-force’ effectiveness of neuroscience plausible techniques specifically tailored for the examination of temporal characteristics, such duty cycle of bursting, interspike interval, spike number deviation in the phenomenological Hindmarsh-Rose model of a bursting neuron and compare the results obtained by calculus-based tools for evaluations of an entire spectrum of Lyapunov exponents broadly employed in studies of nonlinear systems. Conclusions: We have found that the results obtained either way agree exceptionally well, and can identify and differentiate between various fine structures of complex dynamics and underlying global bifurcations in this exemplary model. Our future planes are to enhance the applicability of this computational suite for understanding of polyrhythmic bursting patterns and their functional transformations in small networks

    Kneadings, Symbolic Dynamics and Painting Lorenz Chaos. A Tutorial

    Full text link
    A new computational technique based on the symbolic description utilizing kneading invariants is proposed and verified for explorations of dynamical and parametric chaos in a few exemplary systems with the Lorenz attractor. The technique allows for uncovering the stunning complexity and universality of bi-parametric structures and detect their organizing centers - codimension-two T-points and separating saddles in the kneading-based scans of the iconic Lorenz equation from hydrodynamics, a normal model from mathematics, and a laser model from nonlinear optics.Comment: Journal of Bifurcations and Chaos, 201
    corecore