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Abstract

A few mathematical problems arising in the classical synchroniza-

tion theory are discussed; especially those relating to complex dynam-

ics. The roots of the theory originate in the pioneering experiments

by van der Pol and van der Mark, followed by the theoretical stud-

ies done by Cartwright and Littlewood. Today we focus specifically

on the problem on a periodically forced stable limit cycle emerging

from a homoclinic loop to a saddle point. Its analysis allows us to

single out the regions of simple and complex dynamics, as well as to

yield a comprehensive description of bifurcational phenomena in the

two-parameter case. Of a particular value among ones is the global

bifurcation of a saddle-node periodic orbit. For this bifurcation, we

prove a number of theorems on birth and breakdown of nonsmooth

invariant tori.

1 Introduction. Homoclinic loop under peri-

odic forcing

The following two problems are the enduring ones in the classic theory of
synchronization: the first is on the behavior of an oscillatory system forced
by a periodic external force and the second is on the interaction between
two coupled oscillatory systems. Both cases give a plethora of dynamical
regimes that occur at different parameter regions. Here a control parameter
can be the amplitude and frequency of the external force or the strength of
the coupling in the second problem.

In terms of the theory of dynamical systems the goal is to find a synchro-
nization region in the parameter space that corresponds to the existence of
a stable periodic orbit, and next describe the ways synchronization is lost on
the boundaries of such a region.

Since a system under consideration will be high dimensional (the phase
space is of dimension three in the simplest case and up) one needs the whole
arsenal of tools of the today’s dynamical systems theory.

However our drill can be simplified substantially if the amplitude of the
external force (or the coupling strength) µ is sufficiently small. So when
|µ| � 1, a two-dimensional invariant torus replaces the original limit cy-
cle. The behavior of the trajectories on this torus is given by the following
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diffeomorphism of the circle:

θ̄ = θ + ω + µf(θ, µ) mod 2π, (1)

where f is 2π-periodic in θ, and ω measures the difference in frequencies. The
typical (ω, µ)-parameter plane of (1) looks like one shown in Fig.1. In theory,

Figure 1: Arnold’s tongues in the (ω, µ)-parameter plane.

each rational value ω on the axis µ = 0 is an apex for a synchronization
zone known as Arnold’s tongue. Within each Arnold’s tongue the Poincaré
rotation number

r =
1

2π
lim

N→+∞

1

N

N∑
n=0

(θn+1 − θn)

stays rational but becomes irrational outside of it. The synchronous regime
or phase-locking is observed at rational values of the rotation number corre-
sponding to the existence of the stable periodic orbits on the torus, followed
by the beatings — quasi-periodic trajectories existing at irrational ω.

Note that long periodic orbits existing in narrow Arnold’s tongues corre-
sponding to high order resonances are hardly distinguishably in application
from quasi-periodic ones covering densely the torus.

Saying above is also true for the van der Pol equation:

ẍ+ µ(x2 − 1)ẋ+ ω2

0x = µA sinωt (2)

in the “quasi-linear” case, i.e. when |µ| � 1 and A2 < 4

27
, as shown by

van der Pol [37], Andronov and Vitt [7], Krylov and Bogolubov [15], as well
as recently by Afraimovich and Shilnikov [1] who prove the persistence of

2



the torus after the saddle-node periodic orbit vanishes on the boundary of a
principal resonance zone.

The case of a non-small µ, which is a way complicated then the quasi-
linear one, has a long history. In 1927 van der Pol and van der Mark [38]
published their new results on experimental studies of the sinusoidally driven
neon bulb oscillator. Although they put the primary emphasis upon the ef-
fect of division of the frequency of the oscillations in the system, they also
noticed that: “often an irregular noise is heard in the telephone receiver be-
fore the frequency jumps to the next lower value.” This might mean that
they run across the co-existence of stable periodic regimes with different pe-
riods (often rather long: in the experiments these periods were 100-200 times
larger then one of of the driving force) as well as, in modern terminology, a
complex dynamics (though considered as a side-product then). The latter
may indicate if not the existence of a strange attractor in the phase space
of the system, then, at least, the abundance of saddle orbits comprising a
nontrivial set in charge for the sophisticated transient process.

These experiments had drawn Cartwright and Littlewood’ attention. In
1945 they published some astonishing results of their analysis carried out
for van der Pol equation (2) with µ � 1 [8]. Namely, they had pointed out
the presence of two kinds of intervals for amplitude values A in the segment
(0, 1/3): the intervals of the first kind corresponded to a trivial (periodic)
dynamics in the equation; whereas in the intervals of the second kind, besides
both co-existing stable periodic orbits there was a nontrivial non-wandering
set consisting of unstable orbits and admitting a description in terms of
symbolic dynamics employing two symbols. Thus, they had first found that
a three-dimensional dissipative model might have countably many periodic
orbits and a continuum of aperiodic ones. The elaborative presentation of
these results was done by Littlewood some later, in 1957 [18, 19].

In 1949 Levinson [17] had presented an explanation of these results on
example of the following equation:

εẍ+ ẋ sign(x2 − 1) + εx = A sin t, (3)

with ε� 1. Since this equation is piece-wise linear, the study of the behav-
ior of its trajectories can be essentially simplified making the analysis quite
transparent.

The idea of typicity of the complex behavior of trajectories for a broad
class of nonlinear equations was voiced by Littlewood [18, 19] in the explicit
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form. Today it is curious to note that the very first paper [8] contained a
prophetic statement about the topological equivalence of the van der Pol
equations with different values of A corresponding to complex nontrivial be-
havior. In other words, the dynamical chaos had been viewed by Cartwright
and Littlewood as a robust (generic) phenomenon. When Levinson had
pointed Smale to these results, the latter found that they might admit a
simple geometric interpretation, at least at the qualitative level. This led
Smale to his famous example (dated by 1961) of a diffeomorphism of the
horseshoe with a nontrivial hyperbolic set conjugated topologically with the
Bernoulli subshift on two symbols. The commencement of the modern theory
of dynamical chaos as we all know it now was thus proclaimed.

The study of equations of Levinson’s type was proceeded by in the works
by Osipov [25] and Levi [16] in 70-80s. They produced a complete description
for non-wandering sets as well as proved their hyperbolicity in the indicated
intervals of the parameter A values.

The analysis in the works mentioned above was done only for a finite num-
ber of intervals of the values of A (the intervals of hyperbolicity). The total
length of the remaining part tends to zero as µ → ∞ (or ε → 0). Thus, it
turns out that the studied dynamical features occurring within the intervals
of non-hyperbolicity could be, generally speaking, neglected in the first ap-
proximation. Note however that it is those intervals which correspond to the
transition from simple to complex dynamics coming along with appearances
and disappearances of stable periodic orbits as well as onsets of homoclinic
tangencies leading to the existence of the Newhouse intervals of structural
instability, and so forth... In systems which are not singularly-perturbed all
these effects have to be subjected to a scrupulous analysis.

A suitable example in this sense can be an autonomous system

ẋ = X(x, µ),

which is supposed to have a stable periodic orbit Lµ becoming a homoclinic
loop to a saddle equilibrium state as µ→ 0+. One may wonder what happens
as system is driven periodically by a small force of amplitude of order µ?
This problem was studied in a series of papers by Afraimovich and Shilnikov
[2, 3, 4]. Below we overview the number of the obtained results that are of a
momentous value for the synchronization theory.

For the sake of simplicity we confine the consideration to two equations.
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Suppose that the autonomous system

x̄ = λx+ f(x, y, µ),
ȳ = γy + g(x, y, µ)

have an equilibrium state of the saddle type at the origin with a negative
saddle value

σ = λ+ γ < 0. (4)

Let this saddle have a separatrix loop at µ = 0, see Fig. 2(a). As well known

Figure 2: Homoclinic bifurcation leading to the birth of the stable limit cycle,
plane.

[5, 6] the system shall have a single periodic orbit bifurcating off the loop for
small µ. Let that be so when µ > 0, see Fig. 2(b). In general, the period of
the new born cycle is of order | lnµ|. The last observation makes this problem
and that on van der Pol equation having, at A = 0, a relaxation limit cycle
of period ∼ 1/ε resembling: in both cases the period of the bifurcating limit
cycle grows with no bound as the small parameter tends to zero.

As far as the perturbed system

x̄ = λx+ f(x, y, µ) + µp(x, y, t, µ),
ȳ = γy + g(x, y, µ) + µq(x, y, t, µ),

(5)

is concerned, where p and q are 2π-periodic functions in t, we shall also
suppose that the Melnikov function is positive, which means that the stable
W s and unstable W u manifolds of the saddle periodic orbit (passing nearby
the origin (x = y = 0)) do not cross, see Fig. 3. Now one can easily see that
the plane x = δ in the space {x, y, t} is a cross-section for system (5) at small
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Figure 3: Poincaré map taking a cross-section S1 in the plane x = δ transverse
to the unstable manifold W u of the saddle-periodic orbit Γ onto a cross-
section S0 (in the same plane) to the stable manifold.

δ. The corresponding Poincaré map Tµ is in the form close to the following
modelling map:

ȳ = [y + µ(1 + f(θ))]ν

θ̄ = θ + ω − 1

γ
ln[y + µ(1 + f(θ))],

(6)

where ν = −λ
γ
> 1, ω is a constant, and µ(1+ f(θ)) is the Melnikov function

with 〈f(θ)〉 = 0. The right-hand side of the second equation is to be evaluated
in modulo 2π since θ is an angular variable. The last can be interpreted as the
phase difference between the external force and the response of the system.
Thus, attracting fixed points (for which θ̄ = θ mod 2π) of the above map
correspond to the regime of synchronization.

The limit set of the map Tµ at sufficiently small µ lies within an annulus
Kµ = {0 < x < Cµν , 0 ≤ θ < 2π} with some C > 0. After rescaling y → µνy
the map assumes the form

ȳ = [1 + f(θ)]ν + ...
θ̄ = θ + ω̃ − 1

γ
ln[1 + f(θ)] + ...,

(7)

where the ellipsis stand for the terms converging to zero along with the

their derivatives, while ω̃ =
(
ω − 1

γ
lnµ

)
tends to infinity as µ → +0, i.e.
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ω̃ mod 2π assumes arbitrary values in the interval [0, 2π) countably many
times. Hence, the dynamics of the Poincaré map is dominated largely by the
properties of the family of the circle maps:

θ̄ = θ + ω̃ + F(θ) mod 2π, (8)

where F(θ) = − 1

γ
ln[1 + f(θ)].

Assertions [4] 1. In the case where

1

γ

f ′(θ)

1 + f(θ)
< 1, (9)

the map Tµ has an attracting smooth invariant closed curve of the form
y = h(θ, µ) that contains ω-limit set of any trajectory in Kµ.
2. Let an interval I = [θ1, θ2] exist such that either

f ′(θ) < 0 everywhere on I (10)

and
1

γ
ln

1 + f(θ1)

1 + f(θ2)
> 2π(m+ 1), m ≥ 2, (11)

or
1

γ

f ′(θ)

1 + f(θ)
> 2 everywhere on I (12)

and
1

γ
ln

1 + f(θ2)

1 + f(θ1)
> 2(θ2 − θ1) + 2π(m+ 1), m ≥ 2. (13)

Then, for all sufficiently small µ > 0 the map Tµ will have a hyperbolic set
Σµ conjugated with the Bernoulli subshift on m symbols.

For example, in case f(θ) = A sin θ we have that if A < γ√
1+γ2

, then the

invariant closed curve is an attractor of the system for all small µ, while we
have complex dynamics for A > tanh 3πγ.

The meaning of conditions (10) and (12) is that they provide expansion
in the θ-variable within the region Π : θ ∈ I and, therefore, hyperbolicity
of the map (6) in the same region (contraction in y is always achieved for
all y sufficiently small since ν > 1). Furthermore, if the conditions (11) and
(13) are fulfilled, then the image of the region Π overlaps with Π at least
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m times (see Fig. 4(a)). Hence, we obtain a construction analogous to the
Smale horseshoe; then the second assertion above becomes proven by, say,
referring to the lemma on a saddle fixed point in a countable product of
Banach spaces [30].

Figure 4: a) The image of the segment of the region Π overlaps with Π at
least m times. b) The image of the annulus Kµ under Tµ has no folds.

In the first assertion the condition (9) leads to that the image of the an-
nulus Kµ under Tµ has no folds for small µ (see Fig. 4(b)), in other words it is
also an annulus bounded by two curves of the form y = h±(θ). The following
image of this annulus is self-alike too, and so on. As the result we obtain
a sequence of embedded annuli; moreover, the contraction in the y-variable
guarantees that they intersect in a single and smooth closed curve. This
curve is invariant and attracting as follows, say, from the annulus principle
of [2, 3] (see also [27]).

In attempt for a comprehensive investigation of the synchronization zones
we restrict ourself to the case f(θ) = A sin θ (or f(θ) = Ag(θ), where g(θ) is
a function with preset properties). This choice let us build a quite reasonable
bifurcation diagram (Figs. 5-6) in the plane of the parameters (A,− lnµ) in
the domain {0 ≤ A < 1, 0 < µ < µ0}, where µ0 is sufficiently small. Each
such a region can be shown to adjoin to the axis − lnµ0 at a point with
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Figure 5: Overlapping resonant zones.

the coordinates (2πk, 0), where k is a large enough integer. Inside it there
co-exist a pair of the fixed points of the Poincaré map such that θ̄ = θ+2πk.
Their images in the system (5) are the periodic motions of period 2πk. The
borders of a resonant zone Dk are the bifurcation curves B1

k and B2
k on which

the fixed points merge into a single saddle-node. The curves B1
k continue

up to the line A = 1, while the curves B2
k bend to the left (as µ increases)

staying in the strip below A = 1. Therefore, eventually these curves B2
k will

cross the curves B1
m and B2

m where m < k. Inside the region Dk one of
the fixed points of the map, namely Qk is always of the saddle type. The
other point Pk is stable in the region Sk right between the curves B1

k, B
2
k

and B−
k . Above B−

k the point Pk losses stability that goes to a cycle of
period 2 bifurcating from it. The region Sk is the synchronization zone as
it corresponds to the existence of a stable periodic obit of period 2πk. Note
that for any large enough integers k and m the intersection of the regions
Sk and Sm is non-empty – in it the periodic points of periods 2πk and 2πm
coexist.

Within the region Sk the closed invariant curve, existing (see Assertion 1)

at least when A <
γ√

1 + γ2
, is the unstable manifold W u of the saddle fixed

point Qk which closes on the stable point Pk, as sketched in Fig. 7. After
crossing B−

k the invariant curve no longer exists, see Fig. 8.
Another mechanism of breakdown of the invariant circle is due to the
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Figure 6: Constitution of a resonant zone.

Figure 7: The closure of the unstable manifold of a saddle fixed point is a
closed invariant curve.

onset of homoclinic tangencies produced by the stable and unstable manifolds
of the saddle point Qk. The tangencies occur on the bifurcation curves B1

tk

and B2
tk where each corresponds to a homoclinic contact to its own component

of the set W u\Qk (see Fig. 9).
The curves B1

tk and B2
tk are noteworthy because they break each sector Sk

into regions with simple and complex dynamics. Below the curves B1
tk and

B2
tk in Sk the stable point Pk is a single attractor grabbing all the trajectories

other than the saddle fixed point Qk. In the region above the curves B1
tk and

B2
tk the point Qk has a transverse homoclinic trajectory, and, consequently,

the map must possess a nontrivial hyperbolic set [30]. Note that Sm (m < k)
should overlap with Sk always above B2

tk. Hence if so, in the region Sk ∩ Sm

10



Figure 8: After a period-doubling on B−
k , the closure of the unstable manifold

of the saddle-fixed point is no longer homeomorphic to circle.

Figure 9: End of the closed invariant curve: the very first and last homoclinic
touches of the stable manifold of the saddle fixed point with the unstable one
that occur on the curves B1

tk and B2
tk, respectively.

where a pair of stable periodic orbits of periods 2πk and 2πm coexists, the
dynamics of the phemenologic model is always complex like the corresponding
case of the van der Pol equation.

In fact, stable points of other periods may also exist in the region above
the curves B1

tk and B2
tk: since the homoclinic tangencies arising on the curves

B1
tk and B2

tk are not degenerate (quadratic), it follows from [22] that the
regions above these curves in the parameter plane may be the Newhouse
ones where the system has simultaneously an infinite set of stable periodic
orbits for dense set of parameter values. On the other hand, it follows from
[23] (see [33] for a higher dimensional case) that in addition to that there
will exist regions of hyperbolicity too up here; moreover the stable point Pk
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may be shown to be the only attractor for the parameter values from these
regions.

It should be remarked that the synchronization is always incomplete in
the synchronization zone Sk above the curves B1

tk and B2
tk. This is due to the

likelihood of the presence of other stable periodic orbits of different periods
that co-exist along with the orbit Lk corresponding to the stable fixed point
Pk of the Poincaré map. However, even if this is not the case and Lk is the
only attractor still, the phase difference between Lk and other trajectories
from the hyperbolic set nearby the transverse homoclinics to the saddle point
Qk will grow at the asymptotically linear rate, i.e. the phase locking may be
broken at least within the transient process.

We should remark too that chaos itself is less important for desynchro-
nization then the presence of homoclinics to the saddle point Qk. So, for
example, in the region Dk\Sk beneath the curves B1

tk and B2
tk where Qk

has no homoclinics, the difference in the phase stays always bounded, which
means a relative synchronization, so to speak. Meanwhile the dynamics can
be nonetheless chaotic: for instance, in the region above the curve B0

tk, the
fixed point Pk is no longer stable but a saddle with a transverse homoclinic
orbit. On the curve B0

tk its stable and unstable manifolds have a homoclinic
tangency of the third class in terminology introduced in [10] (illustrated in
Fig. 10) which implies particularly the complex dynamics persisting below
the curve B0

tk as well.

Figure 10: Homoclinic contacts between the invariant manifolds of the saddle
point Pk.

Thus, the region Dk corresponding to the existence of the 2πk-periodic
orbit, may be decomposed into the zones of complete, incomplete and relative
synchronization. The regime of incomplete synchronization, where there are
periodic orbits with different rotation numbers, always yields the complex
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dynamics. Further, in the zone of relative synchronization there is another
“non-rotating” type of chaotic behavior. It can be shown that such a tableau
of the behavior in the resonance zone Dk is drawn not only for f(θ) = A sin θ,
but in generic case too for an arbitrary function f .

The following question gets raised: what will happen upon leaving the
synchronization zone Sk through its boundary B2

k or B1
k, i.e. as the saddle-

node obit vanishes? The answer to this question relies essentially on the
global behavior of the unstable manifold W u of the saddle-node. Above the
points M1

k and M2
k ending up, respectively, the curves B1

tk and B2
tk corre-

sponding to the beginning of the homoclinic trajectories, the unstable man-
ifold W u of the saddle-node has the points of transverse crossings with its
strongly stable manifold Wss (see Fig. 11). It is shown in [20] that this

Figure 11: Homoclinic crossings of the unstable manifold with the strongly
stable one of a saddle-node.

homoclinic structure generates the nontrivial hyperbolic set similar to that
existing nearby a transverse homoclinic trajectory to a saddle. Upon getting
into the region Dk the saddle-node disintegrates becoming a stable node and
a saddle, the latter inherits the homoclinic structure, and hence the hyper-
bolic set persists. Upon exitingDk the saddle-node dissolves, however a great
portion of the hyperbolic set survives [20], i.e. as soon as the boundaries B2

k

and B1
k are crossed above the points M1

k and M2
k we enter the land of desyn-

chronization (“rotational chaos”). The points M1
k and M2

k correspond to the
homoclinic contact between the manifolds W u and W ss (see Fig. 12). At
them the limit set for all trajectories in W u is the saddle-node itself, and W u

is homeomorphic to a circle. Below these points the manifold W u returns
always to the saddle-node from the node region. It is yet homeomorphic to
a circle. Note that for the parameter values near M1

k and M2
k the folds on
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Figure 12: (a) Homoclinic tangencies involving the unstable and the strongly
stable manifolds of a saddle-node. (b) Pre-wiggles of the unstable manifold
of the saddle-node.

W u persist; this implies that W u can not be a smooth manifold (a vector
tangent to W u wiggles as the saddle-node is being approached from the side
of the node region and has not limit). This is always so until W u touches a
leaf of the strongly stable invariant foliation F ss at some point in the node
region (see [24, 28]). On the other hand, if W u crosses the foliation F ss

transversely, then the former adjoins to the saddle-node smoothly. This is
the case where A is small enough: here the smooth invariant closed curve
services for the only attractor; it coincides with W u on the lines B1,2

k . We
denote as M∗1

k and M∗2
k the points on the curves B1

k and B2
k, respectively,

such that below them the manifold W u adjoins at the saddle-node smoothly,
and non-smoothly above them.

We will show in the next section that if either boundary B1
k or B2

k of the
complete synchronization zone is crossed outbound below the points M∗1

k

or M∗2
k , respectively, the stable smooth invariant closed curve persists. It

contains either a dense quasi-periodic trajectory (with an irrational rota-
tion number) or an even number of periodic orbits of rather long periods
at rational rotation numbers. In application these double-frequency regimes
are practically indistinguishable. When the synchronization zone is exited
through its boundaries B1

k and B2
k above the points M∗1

k and M∗2
k we flow

either into chaos right away, or we enter the land where the intervals of the
parameter values corresponding to chaotic and simple dynamics may alter.
The former situation takes always place by the points M1,2

k (as above as be-

14



low), while the alternation occurs near and above the points M∗1
k and M∗2

k .

2 Disappearance of the saddle-node

In this section we will analyze a few versions of global saddle-node bifurca-
tions. The analysis will be carried out with concentration on continuous time
systems because they provide a variety unseen in maps.

Let us consider a one-parameter family of C2-smooth (n+2)-dimensional
dynamical systems depending smoothly on µ ∈ µ(−µ0;µ0). Suppose that
the following conditions are hold:
1. At µ = 0 the system has a periodic orbit L0 of the simple saddle-node
type. This means that all multipliers besides a single one equal +1, lie in the
unit circle, and the first Lyapunov coefficient is not zero.
2. All the trajectories in the unstable manifoldW u of L0 tend to L0 as t→ ∞
and W u ∩W ss = ∅, i.e. the returning manifold W u approaches L0 from the
node region.
3. The family under consideration is transverse to the bifurcational set of
systems with a periodic orbit of the saddle-node type. This implies that as
µ changes the saddle-node bifurcates: it decouples into a saddle and a node
when, say, µ < 0, and does not exist when µ > 0.

According to [32], one may introduce coordinates in a small neighborhood
of the orbit L0 so that the system will assume the following form

ẋ = µ+ x2[1 + p(x, θ, µ)],
ẏ = [A(µ) + q(x, θ, y, µ)]y,

θ̇ = 1,
(14)

where the eigenvalues of the matrix A lie in the left open half-plane. Here θ
is an angular variable defined modulo of 1, i.e. the points (x, y, θ = 0) and
(x, σy, θ = 1) are identified, where σ is some involution in R

n (see [27]). Thus
p is a 1-periodic function in θ, whereas q is of period 2. Moreover, we have
p(0, θ, 0) = 0 and q(0, θ, 0) = 0. In addition, the indicated coordinates are
introduced so that p becomes independent of θ at µ = 0 (the Poincaré map
on the center manifold is imbedded into an autonomous flow; see [34]).

The saddle-node periodic orbit L0 is given by equation (x = 0, y = 0) at
µ = 0. Its strongly stable manifold W ss is locally given by equation x = 0.
The manifold W ss separates the saddle region (where x > 0) of L0 from the
node one where x < 0. The manifold y = 0 is invariant, this is a center
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manifold. When µ < 0 it contains two periodic orbits: stable L1 and saddle
L2, both coalesce in one L0 at µ = 0. When µ > 0 there are no periodic
orbits and a trajectory leaves a small neighborhood of the phantom of the
saddle-node.

At µ = 0 the x-coordinate increases monotonically. In the region x < 0
it tends slowly to zero, at the rate ∼ 1/t. Since the y-component decreases
exponentially, it follows that all trajectories in the node region tend to L0 as
t → +∞ tangentially to the cylinder given by y = 0. In the saddle region
x(t) → 0 now as t→ −∞, and since y increases exponentially as t decreases,
the set of the trajectories converging to the saddle-node L0 as t→ −∞, i.e.
its unstable manifold W u, is the cylinder {y = 0, x ≥ 0}.

As time t increases, a trajectory starting in W u\L0 leaves a small neigh-
borhood of the saddle-node. However, in virtue of Assumption 2, it is to
return to the node region as t → +∞, i.e. it converges to L0 tangentially
to the cylinder y = 0. Hence, a small d > 0 can be chosen so that W u will
cross the section S0 : {x = −d}. Obviously, l̄ = W u ∩ S0 will be a closed
curve. It can be imbedded in S0 variously. We will assume that the median
line l0 : {y = 0} in the cross-section S0 is oriented in direction of increase of
θ, so is the median line l1 : {y = 0} of the section S1 : {x = +d}. Because
l1 = W u ∩S1, it follows that the curve l̄ is an image of the curve l1 under the
map defined by the trajectories of the system, and therefore the orientation
on l1 determines the orientation on l̄ too. Thus, taking the orientation into
account the curve l̄ becomes homotopic to ml0, where m ∈ Z. In case n = 1,
i.e. when the system is defined in R3 and S0 is a 2D ring, the only cases
possible are ones where m = 0, or m = +1. However, if n ≥ 2 all integers
m become admissible. The behavior of W u in case m = 0 is depicted in
Fig. 13(a). When m = 1 the manifold W u is homeomorphic to a 2D torus,
and to a Klein bottle in case m = −1, see Figs. 13(b) and (c). When |m| ≥ 2
the set W u is a |m|-branched manifold (exactly |m| pieces of the set W u ad-
here to any point of the orbit L0 from the node region). Note also that in the
discussed above problem on a periodically forced oscillatory system, as for
example (5), the first case m = 1 can only occur regardless of the dimension
of the phase space.

The analysis of the trajectories nearW u presents interest only when µ > 0
(it is trivial when µ ≤ 0). When µ > 0 the Poincaré map T : S1 → S1

is defined as the superposition of two maps by the orbits of the system:
T1 : S1 → S0 followed by T0 : S0 → S1.

As shown in [32], if the system was before brought to form (14) and the

16



function p is independent of θ at µ = 0, the map T0 : (y0, θ0) ∈ S0 �→
(y1, θ1) ∈ S1 can be written as

y1 = α(y0, θ0, ν),
θ1 = θ0 + ν + β(θ0, ν),

(15)

where ν(µ) is the flight time from S0 to S1. As µ → +0, this time ν tends
monotonically to infinity: ν ∼ 1/

√
µ; meanwhile the functions α and β

converge uniformly to zero, along with all derivatives. Thus, the image of
the cross-section S0 under action of the map T0 shrinks to the median line l1
as µ→ +0.

It takes a finite time for trajectories of the system to travel from the cross-
section S1 to S0. Hence, the map T1 : S1 → S0 is smooth and well-defined
for all small µ. It assumes the form

y0 = G(y1, θ1, µ)
θ0 = F (y1, θ1, µ).

(16)
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Figure 13: Case m = 0 – the blue sky catastrophe. Cases m = 1 and −1:
closure of the unstable manifold of the saddle-node periodic orbit is a smooth
2D torus and a Klein bottle, respectively. Case m = 2 – the solid-torus is
squeezed, doubly expanded and twisted, and inserted back into the original
and so on, producing the Wietorius- van Danzig solenoid in the limit

The image of l1 will, consequently, be given by

y0 = G(0, θ1, 0), θ0 = F (0, θ1, 0). (17)

The second equation in (16) is a map taking a cycle into another one. That
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is why this map may be written as

θ0 = mθ1 + f(θ1), (18)

where f(θ) is a 1-periodic function, and the degree m of the map is the
homotopy integer discussed above.

By virtue of (15), (16) and (18) the Poincaré superposition map T =
T0T1 : S1 → S1 can be recast as

ȳ = g1(y, θ, ν),
θ̄ = mθ + ν + f(θ) + f1(y, θ, ν),

(19)

where the functions f1 and g1 tend to zero as ν → +∞, so do all their
derivatives. Thus, we may see that if the fractional part of ν is set fixed,
then as its integral part ν tends to infinity, the map T degenerates into the
circle map T̃ :

θ̄ = mθ + f(θ) + ν mod 1. (20)

It becomes evident that the dynamics of the map (19) is dominated by the
properties of the map (20). The values of ν with equal fractional parts
give the same map T̃ . Hence, the range of the small parameter µ > 0
is represented as a union of the countable sequence of the intervals Jk =
[µk+1, µk) (where ν(µk) = k) such that the behavior of the map T for each
of such segments Jk is likewise in main.

Let us next outline the following two remarkable casesm = 0 and |m| ≥ 2
considered in [36, 31, 32, 28].
Theorem [36, 32]. At m = 0 the map T has, for all sufficiently small µ,

a single stable fixed point if |f ′(θ)| < 1 for all θ.
After the map T was reduced to the form (19), the claim of the theorem

follows directly from the principle of contracting mappings. It comes clear
from the theorem that as the orbit L0 vanishes the stability goes to a new
born, single periodic orbit whose length and period both tend to infinity as
µ → +0. This bifurcation is called a blue sky catastrophe. The question
of a possibility of infinite increase of the length of a stable periodic orbit
flowing into a bifurcation was set first in [26]; the first such example (of
infinite codimension) was built in [21]. Our construction produces the blue
sky catastrophe through the codimension-1 bifurcation. We may refer the
reader to the example of the system with the explicitly given right hand side
with such catastrophe constructed in [11]. Point out also [28, 29] showing
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that the blue-sky catastrophe in our setting is typical for singularly perturbed
systems with at least two fast variables.
Theorem [36, 31]. Let |m| ≥ 2 and |m + f ′(θ)| > 1 for all θ. Then the

map T will have the hyperbolic Smale-William attractor for all small µ > 0.
In these conditions the map T acts similarly to the construction proposed

by Smale and Williams. Namely, a solid torus S0 is mapped into itself in such
a way that the limit Σ = ∩k≥0T

kS0 is a Wietorius- van Danzig solenoid which
is locally homeomorphic to the direct product of a Cantor set by an interval.
Furthermore, the conditions of the theorem guarantee a uniform expansion
in θ and a contraction in y, i.e. the attractor Σ is a uniformly hyperbolic
set. Besides, since the map T |Σ is topologically conjugated to the limit of
the inverse spectrum for the expanding circle map (of degree |m|), it follows
that all the points of Σ are non-wandering. In other words, we do have here
a genuine hyperbolic attractor (see more in [36, 31]).

As we mentioned above, in case m = ±1 the surface W u at µ = 0 may
adjoin to the saddle-node L0 smoothly as well as non-smoothly, depending
upon how W u crosses the strongly stable invariant foliation F ss in the node
region. When the system is reduced to the form of (14), the leaves of the
foliation are given by {x = const, θ = const}, i.e. on the cross-section S0 the
leaves of F ss are the planes {θ0 = const}. The intersection W u ∩ S0 is the
curve (17). Therefore (see (18)), W u adjoins to L0 smoothly if and only if

m+ f ′(θ) �= 0 (21)

for all θ. This condition is equivalent to that the limiting map T̃ (see(20)) is
a diffeomorphism of the circle for all ν.
Theorem [1]. If the limit map T̃ is a diffeomorphism, then for all µ > 0

sufficiently small the map (19) has a closed stable invariant curve attracting
all the trajectories of the map.

The proof of the theorem follows directly from the annulus principle [3,
27]. Remark that this smooth stable invariant circle of the Poincaré map T
corresponds to a smooth attractive 2D torus in the original system in case
m = 1, and to a smooth invariant Klein bottle in case m = −1.

The case where the map T̃ is no diffeomorphism is more complex. We put
the case m = −1 aside and focus on m = 1 because the later is characteristic
for synchronization problems.

Thus we have that m = 1 and that the limiting map T̃ has critical points.
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Introduce a quantity δ defined as

δ = sup
θ1<θ2

(θ1 + f(θ1) − θ2 − f(θ2)).

Figure 14: δ is the absolute value of the difference between certain minimal
value of the right-hand side of the map and the preceding maximal one.

It becomes evident that δ = 0 if and only if the map T̃ is a homeomor-
phism for all ν, i.e. when its graph is an increasing function. If δ > 0, this
map is to have at least one point of a maximum as well as one point of a mini-
mum; in essence δ determines the magnitude between the given minimal value
of the right-hand side of the map (18) and the preceding maximal one (see

Fig. 14). One can easily evaluate δ(A) =
1

π

(√
4π2A2 − 1 − arctan

√
4π2A2 − 1

)
for the case f = A sin 2πθ, for example.

When δ ≥ 1 each θ has at least three pre-images with respect to map (18).
In terms of the original system the condition δ > 0 holds true if and only if
some leaf of the foliation F ss has more than one (three indeed) intersections
with the unstable manifold W u of the saddle-node orbit at µ = 0, and that
δ ≥ 1 is when and only when W u crosses each leaf of the foliation F ss at
least three times.

Borrowing the terminology introduced in [1] we will refer to the case of
δ > 1 as the case of the big lobe.
Theorem [35]. In case of the big lobe the map T has complex dynamics

for all µ > 0 sufficiently small.
For its proof we should first show that the map T̃ for each ν has a homo-

clinic orbit of some fixed point of the map. Recall that a homoclinic point
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of such orbit in a non-invertible map reaches the fixed point after a finite
number of iterations in forward direction and after infinitely many backward
iterations.

Let θ∗ < θ∗∗ be the maximum and minimum points of the map T̃ , such
that

M∗ ≡ ν + θ∗ + f(θ∗) = ν + θ∗∗ + f(θ∗∗) + δ ≡M∗∗ + δ

(hereM∗ andM∗∗ stand for the corresponding maximum and minimum of the
function in the right-hand side of the map). It follows from the condition δ >
1 that the difference between such values of f in (20) exceeds 1. Therefore,
by adding, if needed, a suitable integer to ν, one can always achieve that
ν + f(θ) has some zeros. They are the fixed points of the map T̃ . Let θ0
be a fixed point next to θ∗ from the left. By translating the origin, one can
achieve θ0 = 0. Thus, we let ν + f(0) = ν + f(1) = 0, and hence M∗ ≥ 0.

For the beginning let M∗ > θ∗. Then the fixed point at the origin is
unstable (at least where θ > 0) and each θ ∈ (0,M∗] has a pre-image with
respect to the map T̃ that is less than θ but positive. Consequently, for each
point θ ∈ (0,M∗] there exists a negative semi-trajectory converging to the
fixed point at the origin. Thus, in case M∗ > 1 (see Fig. 15) we obtain the
sought homoclinic orbit (in backward time it converges to θ = 0, while in
forward time it jumps at the point θ = 1 equivalent to θ = 0 in modulo 1).
Whenever M∗ ≤ 1, leads to M∗∗ < 0. Since M∗ > 0, the segment (θ∗, θ∗∗)

Figure 15: Homoclinic orbit to θ = 0 in the case M∗ > 1.

contains a pre-image of zero which we denote by θ+. If θ+ < M∗, then this

22



point has a negative semi-trajectory tending to zero, i.e. there is a desired
homoclinics, see Fig. 16. In all remaining cases — M∗ ≤ θ+ or even M∗ ≤ θ∗

Figure 16: Homoclinic orbit to θ = 0 in the case θ+ < M∗ ≤ 1

we have that M∗∗ < θ∗∗ − 1. Let θ1 ≥ 1 be a fixed point right closest to
θ∗∗. Because M∗∗ < θ∗∗ it follows that θ1 is an unstable point and that each
θ ∈ [M∗∗, θ1) has a pre-image greater then θ but less than θ1, i.e. there exists
a negative semi-trajectory tending to θ1. Now, since M∗∗ < θ∗∗ − 1 < θ1 − 1,
we have that the point θ = θ1 − 1 begins a negative semi-trajectory tending
to θ1, which means that there is a homoclinics in the given case too, see
Fig. 17. The obtained homoclinic trajectory is structurally stable when it
does not pass through a critical point of the map and when the absolute
value of derivative of the map at the corresponding fixed point of the map
does not equal 1. If it is so, then the original high-dimensional map T has,
for all µ sufficiently small, a saddle fixed point with a transverse homoclinic
orbit. This implies automatically a complex dynamics. One, nonetheless,
cannot guarantee the structural stability of the obtained homoclinic orbits
in the map (20) for all ν and for all functions f . To complete the proof of
the theorem we need additional arguments.

Observe first that the constructed homoclinic trajectory of the map T̃ has
the following feature. Let θ0 be a fixed point, and let θ1 be some point on the
homoclinic trajectory picked nearby θ0. As the map is iterated backward,
the pre-images θ2, θ3, . . . of the point θ1 converge to θ0, at least from one
side. By definition, the image T̃ k0θ1 is the point θ0 itself at some k0. The
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Figure 17: Homoclinic orbit to θ1.

property we are speaking about is that the forward images of an open interval
I1 containing θ1 covers a half-neighborhood of the point θ0, which hosts pre-
images of the point θ1. It comes from here that the image of the interval I1
after certain large number of iterations of the map T̃ will contain the point θ1

and its pre-image θ2 along with the interval I1 itself and some small interval
I2 around the point θ2 such that the image of I2 covers I1, as shown in Fig. 18.
Thus we have shown that if δ > 1, then for each ν there is a pair of intervals

Figure 18: The image of I1 covers both I1 and I2. The image of I2 covers I1.

I1 and I2 such, and the integer k such that the image T̃ (I2) covers I1, while
the image T̃ k(I1) covers both I1 and I2. In virtue of the closeness of the map
(19) to (20) we obtain that for all µ sufficiently small there exists a pair of
the intervals I1 and I2 such that the images of the back sides {θ = const} of
the cylinder θ ∈ I2 mapped by T will be on the opposite side of the cylinder
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θ ∈ I1, while the images of the back sides of the cylinder θ ∈ I1 due to the
action of the map T k will be on the opposite sides of the union of the cylinders
θ ∈ I1 and θ ∈ I2, see Fig. 18. This picture is quite similar to the Smale
horseshoe with a difference that we do not require hyperbolicity (uniform
expansion in θ). It is not hard to show that the map T ′ which is equal to
T at θ ∈ I2 and to T k at θ ∈ I1, in restriction to the set of its trajectories
remaining in the region θ ∈ I1 ∪ I2 is semi-conjugate to the topological
Markov chain shown in Fig. 19. It follows that the topological entropy of the

Figure 19: On the set of the points whose trajectories never leave the region
θ ∈ I1 ∪ I2 the map T ′ is semi-conjugate to a subshift with positive entropy.

map T is positive for all small µ > 0. Note also that here there is always
a hyperbolic periodic orbit with a transverse homoclinic trajectory. Indeed,
the positiveness of the topological entropy implies (see [13]) the existence of
an ergodic invariant measure with a positive Lyapunov exponent. Moreover,
since the map (19) contracts two-dimensional areas for small µ, the remaining
Lyapunov exponents are strictly negative so that the existence of a non-trivial
uniformly hyperbolic set follows in the given case right away from [13]. This
completes the proof of the theorem.

We see that if δ is large enough, the complex dynamics exists always
as the saddle-node disappears. Two theorems below show that when δ is
small the intervals of simple dynamics alter with ones of complex dynamics
as µ→ 0.
Theorem [35]. If δ > 0 in the map (20) and all its critical points are of a

finite order, then the map T has complex dynamics in the intervals of values
of µ which are located arbitrarily close to µ = 0.

After the Poincaré map T is brought to the form (19), this theorem fol-
lows almost immediately from the Newhouse-Palis-Takens theory of rotation
numbers for noninvertible maps of a circle. Indeed, according to [24], when
all critical points of the circle map (20) are of finite order, some periodic
orbit must have a homoclinic at some ν = ν0, provided δ > 0. Therefore,
arguing same as above, when δ > 0 there is a value of ν0 such that a pair of
intervals I1 and I2 can be chosen so that the image T̃ k1(I2) covers I2, and the
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image T̃ k2(I1) covers both I1 and I2, for certain k1 and k2. The rest follows
exactly as in the previous theorem: due to the closeness of the maps T and
T̃ we obtain the existence of an invariant subset of the map T on which the
latter is semi-conjugate with a nontrivial topological Markov chain for all µ
small such that µ mod 1 is close to ν0.
Theorem [35]. If 2δmaxθ f

′′(θ) < 1, then arbitrarily close to µ = 0 there
are intervals of values of µ where the map T has the trivial dynamics: all
trajectories tend to a continuous invariant curve, homeomorphic to a circle,
with a finite number of fixed points.

Proof. Let θ0 be a minimum of f , i.e. f(θ) ≥ f(θ0) for all θ. Choose
ν = ν∗ so that this point becomes a fixed one for the map T̃ , i.e. ν∗ = −f(θ0)
(see (20)). By construction the graph of the map T̃ is nowhere below the
bisectrix θ̄ = θ and only touches it at the point θ0. Let θ1 be a critical point
of the T̃ closest to θ0 on the left. The derivative of the map vanishes at this
point, equals 1 at the point θ0 and it is positive everywhere between θ1 and
θ0. One can then derive that

θ1 + f(θ1) ≤ θ0 + f(θ0) − 1

2maxθ f ′′(θ)
. (22)

Indeed,

θ0 + f(θ0) − (θ1 + f(θ1)) =

∫ θ0

θ1

(1 + f ′(θ))dθ.

Since 1 + f ′(θ) ≥ 0 in the integration interval, we have

θ0 + f(θ0) − (θ1 + f(θ1)) ≥ 1

maxθ f ′′(θ)

∫ θ0

θ1

(1 + f ′(θ))f ′′(θ)dθ,

i.e.

θ0 + f(θ0) − (θ1 + f(θ1)) ≥ 1

2maxθ f ′′(θ)

[
(1 + f ′(θ0))

2 − (1 + f ′(θ1))
2
]
.

Now, since f ′(θ0) = 0 and f ′(θ1) = −1, we obtain the inequality (22).
Now, by the condition of the theorem it follows from (22) that the value

θ̄ which the map takes on at the point θ1 is less the corresponding value at
the fixed point θ0 and the difference does exceed δ. It follows then from the
definition of δ that when θ < θ1 the value of θ̄ is strictly less then θ0. By
construction, same is also true for θ ∈ [θ1, θ0).
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Figure 20: The map has only semi-stable fixed points and trajectories tending
to them.

Thus, at the given ν, the graph of the map on (θ0−1, θ0) belongs entirely
to the region θ ≤ θ̄ < θ0, see Fig. 20.

This means that there are only semi-stable fixed points and trajectories
tending to them. Now, we can pick ν a bit less then ν∗ so that these fixed
points disintegrate in a finite number of stable and unstable ones; the re-
maining trajectories will go to the stable fixed point in forward time and to
the unstable ones in backward time.

This is a structurally stable situation. It persists within a small interval
∆ of values of ν. It persist too for all close maps, i.e. for the map T at
sufficiently small µ such that ν(µ) (mod 1) ∈ ∆. Here, the stable fixed point
of the map T̃ correspond such ones of the map T , while unstable ones to
saddles. The one-dimensional unstable separatrices of the saddles tend to
the stable fixed points; their closures forms an invariant circle. End of the
proof.

3 Conclusion

We can resume now that the common feature of the problems in the classical
synchronization theory is that they are often reducible to the study of an
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annulus map, i.e. a map in the characteristic form

x̄ = G(x, θ),
θ̄ = θ + ω + F (x, θ) mod 1,

(23)

where the functions F and G are 1-periodic in θ. We focused on the simplest
case where the map (23) contracts areas. We described the structure of the
bifurcation diagrams typical for this case, possible synchronization regimes
and the connection between desynchronization and chaos.

We should mention that when the area-contraction property does not
hold and higher dimensions become involved, the situation may be a way
more complicated. So for example, in addition to saddle-node and period-
doubling bifurcations, the system may possess a periodic orbit with a pair of
complex-conjugate multipliers on the unit circle. Furthermore, when the cor-
responding bifurcation curve meets the boundary of the synchronization zone
we will have already a periodic orbit with the triplet of multipliers (1, e±iϕ).
An appropriate local normal form for this bifurcation will be close to that
of an equilibrium state with characteristic exponents equal to (0,±iω) (the
so-called Gavrilov-Guckenheimer point), and its local bifurcations are quite
non-trivial [9, 12]. If, additionally, on the boundary of the synchronization
zone this periodic orbit has a homoclinic trajectory, then one arrives to the
necessity of studying global bifurcations of Gavrilov-Guckenheimer points
with homoclinic orbits. Such a bifurcation has been already seen in the ex-
ample of the blue sky catastrophe [11]. It has been also noticed recently in a
synchronization problem [14]. It is getting evident that other codimension-
two cases like (±1,±1) and (−1, e±iϕ) with homoclinic orbits are worth a
detailed analysis and will be called for soon too.
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