40,299 research outputs found

    Portrait of a Mop

    Full text link

    The photon: A virtual reality

    Get PDF
    It has been observed that every photon is, in a sense, virtual - being emitted and then sooner or later absorbed. As the motif of a quantum radiation state, the photon shares these characteristics of any virtual state: that it is not directly observable; and that it can signify only one of a number of indeterminable intermediates, between matter states that are directly measurable. Nonetheless, other traits of real and virtual behavior are usually quite clearly differentiable. How 'real', then, is the photon? To address this and related questions it is helpful to look in detail at the quantum description of light emission and absorption. A straightforward analysis of the dynamic electric field, based on quantum electrodynamics, reveals not only the entanglement of energy transfer mechanisms usually regarded as 'radiative' and 'radiation less'; it also gives significant physical insights into several other electromagnetic topics. These include: the propagating and non-propagating character in electromagnetic fields; near-zone and wave-zone effects; transverse and longitudinal character; the effects of retardation, manifestations of quantum uncertainty and issues of photon spin. As a result it is possible to gain a clearer perspective on when, or whether, the terms 'real' and 'virtual' are helpful descriptors of the photon

    Alligators I Have Known

    Full text link

    Bimolecular photoabsorption spectroscopy

    Get PDF

    Dissonance

    Full text link

    The Duomo

    Full text link

    Photon-based and classical descriptions in nanophotonics: a review

    Get PDF
    The centrality of the photon concept in modern physics is strongly evident in wide spheres of photonics and nanophotonics. Despite the resilience and persistence of earlier classical representations, there are numerous optical features and phenomena that only truly photon-based descriptions of theory can properly address. It is crucial to cast theory in terms of observables, and in this respect the quantum theory of light engages most directly and pragmatically with experiment. No other theory adequately reconciles the discreteness in energy of optical quanta, with their characteristic quantum mechanical delocalization in space. Examples of the distinctiveness of a photonic representation are to be found in nonclassical optical correlations; intensity fluctuations and phase; polarization, spin, and information content; measures of optical chirality; near-field interactions; and plasmonics. Increasingly, links between these fundamental properties and features are proving significant in the context of nanoscale interactions. Yet, even as new technologies are being built on the framework of modern photonics, a number of difficult questions surrounding the nature of the photon still remain. Both in its flourishing applications and in matters of fundamental entity, the photon is still a subject very much at the heart of current research
    corecore