20,924 research outputs found
Are quantization rules for horizon areas universal?
Doubts have been expressed on the universality of holographic/string-inspired
quantization rules for the horizon areas of stationary black holes or the
products of their radii, already in simple 4-dimensional general relativity.
Realistic black holes are not stationary but time-dependent. Using two examples
of 4D general-relativistic spacetimes containing dynamical black holes for at
least part of the time, it is shown that the quantization rules (even counting
virtual horizons) cannot hold, except possibly at isolated instants of time,
and do not seem to be universal.Comment: One example and one figure added, two figures improved, bibliography
expanded and updated. Matches the version accepted for publication in Phys.
Rev.
Remarks on the Myers-Perry and Einstein Gauss-Bonnet Rotating Solutions
The Kerr-type solutions of the five-dimensional Einstein and
Einstein-Gauss-Bonnet equations look pretty similar when written in Kerr-Schild
form. However the Myers-Perry spacetime is circular whereas the rotating
solution of the Einstein-Gauss-Bonnet theory is not. We explore some
consequences of this difference in particular regarding the (non) existence of
Boyer-Lindquist-type coordinates and the extension of the manifold
Patterson Function from Low-Energy Electron Diffraction Measured Intensities and Structural Discrimination
Surface Patterson Functions have been derived by direct inversion of
experimental Low-Energy Electron Diffraction I-V spectra measured at multiple
incident angles. The direct inversion is computationally simple and can be used
to discriminate between different structural models. 1x1 YSi_2 epitaxial layers
grown on Si(111) have been used to illustrate the analysis. We introduce a
suitable R-factor for the Patterson Function to make the structural
discrimination as objective as possible. From six competing models needed to
complete the geometrical search, four could easily be discarded, achieving a
very significant and useful reduction in the parameter space to be explored by
standard dynamical LEED methods. The amount and quality of data needed for this
analysis is discussed.Comment: 5 pages, 4 figure
- …
