19,253 research outputs found
Chiral spin-orbital liquids with nodal lines
Strongly correlated materials with strong spin-orbit coupling hold promise
for realizing topological phases with fractionalized excitations. Here we
propose a chiral spin-orbital liquid as a stable phase of a realistic model for
heavy-element double perovskites. This spin liquid state has Majorana fermion
excitations with a gapless spectrum characterized by nodal lines along the
edges of the Brillouin zone. We show that the nodal lines are topological
defects of a non-Abelian Berry connection and that the system exhibits
dispersing surface states. We discuss some experimental signatures of this
state and compare them with properties of the spin liquid candidate Ba_2YMoO_6.Comment: 5 pages + supplementary materia
Trajectories in a space with a spherically symmetric dislocation
We consider a new type of defect in the scope of linear elasticity theory,
using geometrical methods. This defect is produced by a spherically symmetric
dislocation, or ball dislocation. We derive the induced metric as well as the
affine connections and curvature tensors. Since the induced metric is
discontinuous, one can expect ambiguity coming from these quantities, due to
products between delta functions or its derivatives, plaguing a description of
ball dislocations based on the Geometric Theory of Defects. However, exactly as
in the previous case of cylindric defect, one can obtain some well-defined
physical predictions of the induced geometry. In particular, we explore some
properties of test particle trajectories around the defect and show that these
trajectories are curved but can not be circular orbits.Comment: 11 pages, 3 figure
Teleparallel Spin Connection
A new expression for the spin connection of teleparallel gravity is proposed,
given by minus the contorsion tensor plus a zero connection. The corresponding
minimal coupling is covariant under local Lorentz transformation, and
equivalent to the minimal coupling prescription of general relativity. With
this coupling prescription, therefore, teleparallel gravity turns out to be
fully equivalent to general relativity, even in the presence of spinor fields.Comment: 2 pages, RevTeX, to appear in Phys. Rev D (Brief Report
- …