9,338 research outputs found
Third post-Newtonian dynamics of compact binaries: Equations of motion in the center-of-mass frame
The equations of motion of compact binary systems and their associated
Lagrangian formulation have been derived in previous works at the third
post-Newtonian (3PN) approximation of general relativity in harmonic
coordinates. In the present work we investigate the binary's relative dynamics
in the center-of-mass frame (center of mass located at the origin of the
coordinates). We obtain the 3PN-accurate expressions of the center-of-mass
positions and equations of the relative binary motion. We show that the
equations derive from a Lagrangian (neglecting the radiation reaction), from
which we deduce the conserved center-of-mass energy and angular momentum at the
3PN order. The harmonic-coordinates center-of-mass Lagrangian is equivalent,
{\it via} a contact transformation of the particles' variables, to the
center-of-mass Hamiltonian in ADM coordinates that is known from the
post-Newtonian ADM-Hamiltonian formalism. As an application we investigate the
dynamical stability of circular binary orbits at the 3PN order.Comment: 31 pages, to appear in Classical and Quantum Gravit
Estudo da oferta e comercialização de repolho na CEAPE no período de 1999 a 2005.
bitstream/item/26141/1/f-11.pd
Nanopercolation
We investigate through direct molecular mechanics calculations the
geometrical properties of hydrocarbon mantles subjected to percolation
disorder. We show that the structures of mantles generated at the critical
percolation point have a fractal dimension . In addition,
the solvent access surface and volume of these molecules follow
power-law behavior, and ,
where is the system size, and with both critical exponents and
being significantly dependent on the radius of the accessing probing
molecule, . Our results from extensive simulations with two distinct
microscopic topologies (i.e., square and honeycomb) indicate the consistency of
the statistical analysis and confirm the self-similar characteristic of the
percolating hydrocarbons. Due to their highly branched topology, some of the
potential applications for this new class of disordered molecules include drug
delivery, catalysis, and supramolecular structures.Comment: 4 pages, 5 figure
Produção de húmus de minhoca com resíduos orgânicos domiciliares.
bitstream/CPATC-2009-09/20373/1/f_16_2008.pd
Pragas e inimigos naturais presentes nas folhas das plantas de feijão-caupi e milho-verde em cultivo consorciado e com sistema orgânico de produção.
bitstream/CPATC-2009-09/20522/1/ct-40.pd
Complete adiabatic waveform templates for a test-mass in the Schwarzschild spacetime: VIRGO and Advanced LIGO studies
Post-Newtonian expansions of the binding energy and gravitational wave flux
truncated at the {\it same relative} post-Newtonian order form the basis of the
{\it standard adiabatic} approximation to the phasing of gravitational waves
from inspiralling compact binaries. Viewed in terms of the dynamics of the
binary, the standard approximation is equivalent to neglecting certain
conservative post-Newtonian terms in the acceleration. In an earlier work, we
had proposed a new {\it complete adiabatic} approximant constructed from the
energy and flux functions. At the leading order it employs the 2PN energy
function rather than the 0PN one in the standard approximation, so that,
effectively the approximation corresponds to the dynamics where there are no
missing post-Newtonian terms in the acceleration. In this paper, we compare the
overlaps of the standard and complete adiabatic templates with the exact
waveform in the adiabatic approximation of a test-mass motion in the
Schwarzschild spacetime, for the VIRGO and the Advanced LIGO noise spectra. It
is found that the complete adiabatic approximants lead to a remarkable
improvement in the {\it effectualness} at lower PN ( 3PN) orders, while
standard approximants of order 3PN provide a good lower-bound to the
complete approximants for the construction of effectual templates. {\it
Faithfulness} of complete approximants is better than that of standard
approximants except for a few post-Newtonian orders. Standard and complete
approximants beyond the adiabatic approximation are also studied using the
Lagrangian templates of Buonanno, Chen and Vallisneri.Comment: Proceedings of the GWDAW-9, Accepted for publication in Class. Quant.
Gra
- …