9,075 research outputs found

    Future dynamics in f(R) theories

    Full text link
    The f(R)f(R) gravity theories provide an alternative way to explain the current cosmic acceleration without invoking dark energy matter component. However, the freedom in the choice of the functional forms of f(R)f(R) gives rise to the problem of how to constrain and break the degeneracy among these gravity theories on theoretical and/or observational grounds. In this paper to proceed further with the investigation on the potentialities, difficulties and limitations of f(R)f(R) gravity, we examine the question as to whether the future dynamics can be used to break the degeneracy between f(R)f(R) gravity theories by investigating the future dynamics of spatially homogeneous and isotropic dust flat models in two f(R)f(R) gravity theories, namely the well known f(R)=R+αRnf(R) = R + \alpha R^{n} gravity and another by A. Aviles et al., whose motivation comes from the cosmographic approach to f(R)f(R) gravity. To this end we perform a detailed numerical study of the future dynamic of these flat model in these theories taking into account the recent constraints on the cosmological parameters made by the Planck team. We show that besides being powerful for discriminating between f(R)f(R) gravity theories, the future dynamics technique can also be used to determine the fate of the Universe in the framework of these f(R)f(R) gravity theories. Moreover, there emerges from our numerical analysis that if we do not invoke a dark energy component with equation-of-state parameter ω<−1\omega < -1 one still has dust flat FLRW solution with a big rip, if gravity deviates from general relativity via f(R)=R+αRnf(R) = R + \alpha R^n . We also show that FLRW dust solutions with f′′<0f''<0 do not necessarily lead to singularity.Comment: 12 pages, 8 figures. V2: Generality and implications of the results are emphasized, connection with the recent literature improved, typos corrected, references adde

    Uso do SOC na análise de modelos lineares multivariados.

    Get PDF
    bitstream/item/76201/1/CNPTIA-COM.TEC.-8805-88.pd

    Uso do SOC na análise de curvas de crescimento.

    Get PDF
    bitstream/item/76084/1/CNPTIA-COM.TEC.-8901-89.pd

    Trajectories in a space with a spherically symmetric dislocation

    Full text link
    We consider a new type of defect in the scope of linear elasticity theory, using geometrical methods. This defect is produced by a spherically symmetric dislocation, or ball dislocation. We derive the induced metric as well as the affine connections and curvature tensors. Since the induced metric is discontinuous, one can expect ambiguity coming from these quantities, due to products between delta functions or its derivatives, plaguing a description of ball dislocations based on the Geometric Theory of Defects. However, exactly as in the previous case of cylindric defect, one can obtain some well-defined physical predictions of the induced geometry. In particular, we explore some properties of test particle trajectories around the defect and show that these trajectories are curved but can not be circular orbits.Comment: 11 pages, 3 figure

    Thermostatistics of overdamped motion of interacting particles

    Full text link
    We show through a nonlinear Fokker-Planck formalism, and confirm by molecular dynamics simulations, that the overdamped motion of interacting particles at T=0, where T is the temperature of a thermal bath connected to the system, can be directly associated with Tsallis thermostatistics. For sufficiently high values of T, the distribution of particles becomes Gaussian, so that the classical Boltzmann-Gibbs behavior is recovered. For intermediate temperatures of the thermal bath, the system displays a mixed behavior that follows a novel type of thermostatistics, where the entropy is given by a linear combination of Tsallis and Boltzmann-Gibbs entropies.Comment: 4 pages, 2 figure
    • …
    corecore