93 research outputs found

    Exact bosonization in two spatial dimensions and a new class of lattice gauge theories

    Full text link
    We describe a 2d analog of the Jordan-Wigner transformation which maps an arbitrary fermionic system on a 2d lattice to a lattice gauge theory while preserving the locality of the Hamiltonian. When the space is simply-connected, this bosonization map is an equivalence. We describe several examples of 2d bosonization, including free fermions on square and honeycomb lattices and the Hubbard model. We describe Euclidean actions for the corresponding lattice gauge theories and find that they contains Chern-Simons-like terms. Finally, we write down a fermionic dual of the gauged Ising model (the Fradkin-Shenker model).Comment: 30 pages, 8 figure

    Free and Interacting Short-Range Entangled Phases of Fermions: Beyond the Ten-Fold Way

    Get PDF
    We extend the periodic table of phases of free fermions in the ten-fold way symmetry classes to a classification of free fermionic phases protected by an arbitrary on-site unitary symmetry G^\hat G in an arbitrary dimension. The classification is described as a function of the real representation theory of G^\hat G and the data of the original periodic table. We also systematically study in low dimensions the relationship between the free invariants and the invariants of short-range entangled interacting phases of fermions. Namely we determine whether a given symmetry protected phase of free fermions is destabilized by sufficiently strong interactions or it remains stable even in the presence of interactions. We also determine which interacting fermionic phases cannot be realized by free fermions. Examples of both destabilized free phases and intrinsically interacting phases are common in all dimensions.Comment: 18 page

    Bosonization in three spatial dimensions and a 2-form gauge theory

    Get PDF
    We describe a 3d analog of the Jordan-Wigner transformation which maps an arbitrary fermionic system on a 3d spatial lattice to a 2-form Zā‚‚ gauge theory with an unusual Gauss law. An important property of this map is that it preserves the locality of the Hamiltonian. The map depends explicitly on the choice of a spin structure of the spatial manifold. We give examples of 3d bosonic systems dual to free fermions. We also describe the corresponding Euclidean lattice models, which is analogous to the Steenrod square term in (3+1)D [compared to the Chern-Simon term in (2+1)D]

    Exact bosonization in two spatial dimensions and a new class of lattice gauge theories

    Get PDF
    We describe a 2d analog of the Jordan-Wigner transformation which maps an arbitrary fermionic system on a 2d lattice to a lattice gauge theory while preserving the locality of the Hamiltonian. When the space is simply-connected, this bosonization map is an equivalence. We describe several examples of 2d bosonization, including free fermions on square and honeycomb lattices and the Hubbard model. We describe Euclidean actions for the corresponding lattice gauge theories and find that they contain Chernā€“Simons-like terms. Finally, we write down a fermionic dual of the gauged Ising model (the Fradkin-Shenker model)

    Bosonization in three spatial dimensions and a 2-form gauge theory

    Get PDF
    We describe a 3d analog of the Jordan-Wigner transformation which maps an arbitrary fermionic system on a 3d spatial lattice to a 2-form Zā‚‚ gauge theory with an unusual Gauss law. An important property of this map is that it preserves the locality of the Hamiltonian. The map depends explicitly on the choice of a spin structure of the spatial manifold. We give examples of 3d bosonic systems dual to free fermions. We also describe the corresponding Euclidean lattice models, which is analogous to the Steenrod square term in (3+1)D [compared to the Chern-Simon term in (2+1)D]

    Exact bosonization in two spatial dimensions and a new class of lattice gauge theories

    Get PDF
    We describe a 2d analog of the Jordan-Wigner transformation which maps an arbitrary fermionic system on a 2d lattice to a lattice gauge theory while preserving the locality of the Hamiltonian. When the space is simply-connected, this bosonization map is an equivalence. We describe several examples of 2d bosonization, including free fermions on square and honeycomb lattices and the Hubbard model. We describe Euclidean actions for the corresponding lattice gauge theories and find that they contain Chernā€“Simons-like terms. Finally, we write down a fermionic dual of the gauged Ising model (the Fradkin-Shenker model)

    Free and interacting short-range entangled phases of fermions: Beyond the tenfold way

    Get PDF
    We extend the periodic table of phases of free fermions in the tenfold way symmetry classes to a classification of free fermionic phases protected by an arbitrary on-site unitary symmetry G in an arbitrary dimension. The classification is described as a function of the real representation theory of G and the data of the original periodic table. We also systematically study in low dimensions the relationship between the free invariants and the invariants of short-range entangled interacting phases of fermions. Namely we determine whether a given symmetry protected phase of free fermions is destabilized by sufficiently strong interactions or it remains stable even in the presence of interactions. We also determine which interacting fermionic phases cannot be realized by free fermions. Examples of both destabilized free phases and intrinsically interacting phases are common in all dimensions

    Ucma/GRP inhibits phosphate-induced vascular smooth muscle cell calcification via SMAD-dependent BMP signalling

    Get PDF
    Vascular calcification (VC) is the process of deposition of calcium phosphate crystals in the blood vessel wall, with a central role for vascular smooth muscle cells (VSMCs). VC is highly prevalent in chronic kidney disease (CKD) patients and thought, in part, to be induced by phosphate imbalance. The molecular mechanisms that regulate VC are not fully known. Here we propose a novel role for the mineralisation regulator Ucma/GRP (Upper zone of growth plate and Cartilage Matrix Associated protein/Gla Rich Protein) in phosphate-induced VSMC calcification. We show that Ucma/GRP is present in calcified atherosclerotic plaques and highly expressed in calcifying VSMCs in vitro. VSMCs from Ucma/GRP(-/-) mice showed increased mineralisation and expression of osteo/chondrogenic markers (BMP-2, Runx2, beta-catenin, p-SMAD1/5/8, ALP, OCN), and decreased expression of mineralisation inhibitor MGP, suggesting that Ucma/GRP is an inhibitor of mineralisation. Using BMP signalling inhibitor noggin and SMAD1/5/8 signalling inhibitor dorsomorphin we showed that Ucma/GRP is involved in inhibiting the BMP-2-SMAD1/5/8 osteo/chondrogenic signalling pathway in VSMCs treated with elevated phosphate concentrations. Additionally, we showed for the first time evidence of a direct interaction between Ucma/GRP and BMP-2. These results demonstrate an important role of Ucma/GRP in regulating osteo/chondrogenic differentiation and phosphate-induced mineralisation of VSMCs.NWO ZonMw [MKMD 40-42600-98-13007]; FCT [SFRH/BPD/70277/2010]info:eu-repo/semantics/publishedVersio

    F-Theorem without Supersymmetry

    Full text link
    The conjectured F-theorem for three-dimensional field theories states that the finite part of the free energy on S^3 decreases along RG trajectories and is stationary at the fixed points. In previous work various successful tests of this proposal were carried out for theories with {\cal N}=2 supersymmetry. In this paper we perform more general tests that do not rely on supersymmetry. We study perturbatively the RG flows produced by weakly relevant operators and show that the free energy decreases monotonically. We also consider large N field theories perturbed by relevant double trace operators, free massive field theories, and some Chern-Simons gauge theories. In all cases the free energy in the IR is smaller than in the UV, consistent with the F-theorem. We discuss other odd-dimensional Euclidean theories on S^d and provide evidence that (-1)^{(d-1)/2} \log |Z| decreases along RG flow; in the particular case d=1 this is the well-known g-theorem.Comment: 34 pages, 2 figures; v2 refs added, minor improvements; v3 refs added, improved section 4.3; v4 minor improvement
    • ā€¦
    corecore