1,497 research outputs found
Inferring Social Media Users’ Demographics from Profile Pictures: A Face++ Analysis on Twitter Users
In this research, we evaluate the applicability of using facial recognition of social media account profile pictures to infer the demographic attributes of gender, race, and age of the account owners leveraging a commercial and well-known image service, specifically Face++. Our goal is to determine the feasibility of this approach for actual system implementation. Using a dataset of approximately 10,000 Twitter profile pictures, we use Face++ to classify this set of images for gender, race, and age. We determine that about 30% of these profile pictures contain identifiable images of people using the current state-of-the-art automated means. We then employ human evaluations to manually tag both the set of images that were determined to contain faces and the set that was determined not to contain faces, comparing the results to Face++. Of the thirty percent that Face++ identified as containing a face, about 80% are more likely than not the account holder based on our manual classification, with a variety of issues in the remaining 20%. Of the images that Face++ was unable to detect a face, we isolate a variety of likely issues preventing this detection, when a face actually appeared in the image. Overall, we find the applicability of automatic facial recognition to infer demographics for system development to be problematic, despite the reported high accuracy achieved for image test collection
Who are your users?:Comparing media professionals’ preconception of users to data-driven personas
fals
Genetic associations with childhood brain growth, defined in two longitudinal cohorts
Genome-wide association studies (GWASs) are unraveling the genetics of adult brain neuroanatomy as measured by cross-sectional anatomic magnetic resonance imaging (aMRI). However, the genetic mechanisms that shape childhood brain development are, as yet, largely unexplored. In this study we identify common genetic variants associated with childhood brain development as defined by longitudinal aMRI. Genome-wide single nucleotide polymorphism (SNP) data were determined in two cohorts: one enriched for attention-deficit/hyperactivity disorder (ADHD) (LONG cohort: 458 participants; 119 with ADHD) and the other from a population-based cohort (Generation R: 257 participants). The growth of the brain's major regions (cerebral cortex, white matter, basal ganglia, and cerebellum) and one region of interest (the right lateral prefrontal cortex) were defined on all individuals from two aMRIs, and a GWAS and a pathway analysis were performed. In addition, association between polygenic risk for ADHD and brain growth was determined for the LONG cohort. For white matter growth, GWAS meta-analysis identified a genome-wide significant intergenic SNP (rs12386571, P = 9.09 Ă— 10-9 ), near AKR1B10. This gene is part of the aldo-keto reductase superfamily and shows neural expression. No enrichment of neural pathways was detected and polygenic risk for ADHD was not associated with the brain growth phenotypes in the LONG cohort that was enriched for the diagnosis of ADHD. The study illustrates the use of a novel brain growth phenotype defined in vivo for further study
- …