3,454 research outputs found

    Sodium leak through K2P potassium channels and cardiac arrhythmia, an emerging theme.

    Get PDF
    In this issue of EMBO Molecular Medicine, Decher et al (2017) identify a point mutation in the K2P2 (TREK‐1) potassium (K+) channel that changes function in just those ways expected to predispose to right ventricular outflow tract (RVOT) ventricular tachycardia (VT) in the patient they study. Whereas wild‐type channels are selective for K+ and inhibited by β‐adrenergic stimulation, mutant I267T channels pass sodium (Na+) into the cells, even during β‐adrenergic stimulation, and are more active in response to membrane stretch, changes predicted to enhance cardiac myocyte excitability. The report contributes to accumulating evidence for Na+ leak via K2P channels in association with normal development (Thomas et al, 2008), acquired arrhythmia (Ma et al, 2011), and now a missense mutation. Decher et al (2017) both inform and direct us toward interesting opportunities for further investigation

    SUMOylation of NaV1.2 channels mediates the early response to acute hypoxia in central neurons.

    Get PDF
    The mechanism for the earliest response of central neurons to hypoxia-an increase in voltage-gated sodium current (INa)-has been unknown. Here, we show that hypoxia activates the Small Ubiquitin-like Modifier (SUMO) pathway in rat cerebellar granule neurons (CGN) and that SUMOylation of NaV1.2 channels increases INa. The time-course for SUMOylation of single NaV1.2 channels at the cell surface and changes in INa coincide, and both are prevented by mutation of NaV1.2-Lys38 or application of a deSUMOylating enzyme. Within 40 s, hypoxia-induced linkage of SUMO1 to the channels is complete, shifting the voltage-dependence of channel activation so that depolarizing steps evoke larger sodium currents. Given the recognized role of INa in hypoxic brain damage, the SUMO pathway and NaV1.2 are identified as potential targets for neuroprotective interventions
    corecore