163 research outputs found
New Constraints from PAMELA anti-proton data on Annihilating and Decaying Dark Matter
Recently the PAMELA experiment has released its updated anti-proton flux and
anti-proton to proton flux ratio data up to energies of ~200GeV. With no clear
excess of cosmic ray anti-protons at high energies, one can extend constraints
on the production of anti-protons from dark matter. In this letter, we consider
both the cases of dark matter annihilating and decaying into standard model
particles that produce significant numbers of anti-protons. We provide two sets
of constraints on the annihilation cross-sections/decay lifetimes. In the one
set of constraints we ignore any source of anti-protons other than dark matter,
which give the highest allowed cross-sections/inverse lifetimes. In the other
set we include also anti-protons produced in collisions of cosmic rays with
interstellar medium nuclei, getting tighter but more realistic constraints on
the annihilation cross-sections/decay lifetimes.Comment: 7 pages, 3 figures, 3 table
Determining Supersymmetric Parameters With Dark Matter Experiments
In this article, we explore the ability of direct and indirect dark matter
experiments to not only detect neutralino dark matter, but to constrain and
measure the parameters of supersymmetry. In particular, we explore the
relationship between the phenomenological quantities relevant to dark matter
experiments, such as the neutralino annihilation and elastic scattering cross
sections, and the underlying characteristics of the supersymmetric model, such
as the values of mu (and the composition of the lightest neutralino), m_A and
tan beta. We explore a broad range of supersymmetric models and then focus on a
smaller set of benchmark models. We find that by combining astrophysical
observations with collider measurements, mu can often be constrained far more
tightly than it can be from LHC data alone. In models in the A-funnel region of
parameter space, we find that dark matter experiments can potentially determine
m_A to roughly +/-100 GeV, even when heavy neutral MSSM Higgs bosons (A, H_1)
cannot be observed at the LHC. The information provided by astrophysical
experiments is often highly complementary to the information most easily
ascertained at colliders.Comment: 46 pages, 76 figure
Antimatter signals of singlet scalar dark matter
We consider the singlet scalar model of dark matter and study the expected
antiproton and positron signals from dark matter annihilations. The regions of
the viable parameter space of the model that are excluded by present data are
determined, as well as those regions that will be probed by the forthcoming
experiment AMS-02. In all cases, different propagation models are investigated,
and the possible enhancement due to dark matter substructures is analyzed. We
find that the antiproton signal is more easily detectable than the positron one
over the whole parameter space. For a typical propagation model and without any
boost factor, AMS-02 will be able to probe --via antiprotons-- the singlet
model of dark matter up to masses of 600 GeV. Antiprotons constitute,
therefore, a promising signal to constraint or detect the singlet scalar model.Comment: 24 pages, 8 figures. v2: minor improvements. Accepted for publication
in JCA
Some model-independent phenomenological consequences of flexible brane worlds
In this work we will review the main properties of brane-world models with
low tension. Starting from very general principles, it is possible to obtain an
effective action for the relevant degrees of freedom at low energies (branons).
Using the cross sections for high-energy processes involving branons, we set
bounds on the different parameters appearing in these models. We also show that
branons provide a WIMP candidate for dark matter in a natural way. We consider
cosmological constraints on its thermal and non-thermal relic abundances. We
derive direct detection limits and compare those limits with the preferred
parameter region in the case in which the EGRET excess in the diffuse galactic
gamma rays is due to dark matter annihilation. Finally we will discuss the
constraints coming from the precision tests of the Standard Model and the muon
anomalous magnetic moment.Comment: 10 pages, 6 figures. Contribution to the Proceedings of the Second
International Conference on Quantum Theories and Renormalization Group in
Gravity and Cosmology, IRGAC 2006, Barcelona, 11-15 July, 200
Observation of Complex Time Structures in the Cosmic-Ray Electron and Positron Fluxes with the Alpha Magnetic Spectrometer on the International Space Station
We present high-statistics, precision measurements of the detailed time and energy dependence of the primary cosmic-ray electron flux and positron flux over 79 Bartels rotations from May 2011 to May 2017 in the energy range from 1 to 50 GeV. For the first time, the charge-sign dependent modulation during solar maximum has been investigated in detail by leptons alone. Based on 23.5×106 events, we report the observation of short-term structures on the timescale of months coincident in both the electron flux and the positron flux. These structures are not visible in the e+/e- flux ratio. The precision measurements across the solar polarity reversal show that the ratio exhibits a smooth transition over 830±30 days from one value to another. The midpoint of the transition shows an energy dependent delay relative to the reversal and changes by 260±30 days from 1 to 6 GeV.Peer Reviewe
Observation of Fine Time Structures in the Cosmic Proton and Helium Fluxes with the Alpha Magnetic Spectrometer on the International Space Station
We present the precision measurement from May 2011 to May 2017 (79 Bartels rotations) of the proton fluxes at rigidities from 1 to 60 GV and the helium fluxes from 1.9 to 60 GV based on a total of 1×109 events collected with the Alpha Magnetic Spectrometer aboard the International Space Station. This measurement is in solar cycle 24, which has the solar maximum in April 2014. We observed that, below 40 GV, the proton flux and the helium flux show nearly identical fine structures in both time and relative amplitude. The amplitudes of the flux structures decrease with increasing rigidity and vanish above 40 GV. The amplitudes of the structures are reduced during the time period, which started one year after solar maximum, when the proton and helium fluxes steadily increase. Above ∼3 GV the p/He flux ratio is time independent. We observed that below ∼3 GV the ratio has a long-term decrease coinciding with the period during which the fluxes start to rise.Peer Reviewe
- …
