12 research outputs found

    Apoptotic interactions of cytochrome c: Redox flirting with anionic phospholipids within and outside of mitochondria

    Get PDF
    AbstractSince the (re)discovery of cytochrome c (cyt c) in the early 1920s and subsequent detailed characterization of its structure and function in mitochondrial electron transport, it took over 70 years to realize that cyt c plays a different, not less universal role in programmed cell death, apoptosis, by interacting with several proteins and forming apoptosomes. Recently, two additional essential functions of cyt c in apoptosis have been discovered that are carried out via its interactions with anionic phospholipids: a mitochondria specific phospholipid, cardiolipin (CL), and plasma membrane phosphatidylserine (PS). Execution of apoptotic program in cells is accompanied by substantial and early mitochondrial production of reactive oxygen species (ROS). Because antioxidant enhancements protect cells against apoptosis, ROS production was viewed not as a meaningless side effect of mitochondrial disintegration but rather playing some – as yet unidentified – role in apoptosis. This conundrum has been resolved by establishing that mitochondria contain a pool of cyt c, which interacts with CL and acts as a CL oxygenase. The oxygenase is activated during apoptosis, utilizes generated ROS and causes selective oxidation of CL. The oxidized CL is required for the release of pro-apoptotic factors from mitochondria into the cytosol. This redox mechanism of cyt c is realized earlier than its other well-recognized functions in the formation of apoptosomes and caspase activation. In the cytosol, released cyt c interacts with another anionic phospholipid, PS, and catalyzes its oxidation in a similar oxygenase reaction. Peroxidized PS facilitates its externalization essential for the recognition and clearance of apoptotic cells by macrophages. Redox catalysis of plasma membrane PS oxidation constitutes an important redox-dependent function of cyt c in apoptosis and phagocytosis. Thus, cyt c acts as an anionic phospholipid specific oxygenase activated and required for the execution of essential stages of apoptosis. This review is focused on newly discovered redox mechanisms of complexes of cyt c with anionic phospholipids and their role in apoptotic pathways in health and disease

    Identification of naturally processed and HLA-presented Epstein-Barr virus peptides recognized by CD4(+) or CD8(+) T lymphocytes from human blood

    No full text
    The broad clinical implementation of cancer vaccines targeting the induction of specific T cell-mediated immunity is hampered because T cell defined tumor-associated peptides are currently available for only a restricted range of tumor types. Current epitope identification strategies require a priori the generation of T "indicator" cell lines that specifically recognize the tumor antigenic epitope in in vitro assay systems. An alternative to this strategy is the use of "memory" T cells freshly isolated from the peripheral blood of patients with cancer in concert with sensitive effector cell readout assays (such as the cytokine enzyme-linked immunospot assay) and MS to identify relevant peptide epitopes. In a model system, we have evaluated the capacity of natural Epstein-Barr virus (EBV)-transformed B-lymphoblastoid cell line-extracted peptides to activate "memory" viral-specific CD4(+) or CD8(+) T cells freshly isolated from the blood of an EBV-seropositive individual using the IFN-gamma enzyme-linked immunospot assay. After HPLC fractionation and loading onto autologous dendritic cells, multiple naturally processed HLA class I and II-associated lymphoblastoid cell line-derived peptides were isolated that were capable of inducing IFN-gamma spot production by "memory" T lymphocytes. Using MS analysis on a HPLC fraction recognized by CD8(+) T cells, we were able to sequence natural 9-, 10-, and 11-mer peptides naturally processed from the latent EBV antigen LMP-2 (latent membrane protein-2) and presented in the context of HLA-A2. This approach provides a useful methodology for the future identification of MHC-presented viral and tumor epitopes using freshly isolated patient materials

    Formation of protein adducts with Hydroperoxy-PE electrophilic cleavage products during ferroptosis

    No full text
    Ferroptosis is an iron dependent form of cell death, that is triggered by the discoordination of iron, lipids, and thiols. Its unique signature that distinguishes it from other forms of cell death is the formation and accumulation of lipid hydroperoxides, particularly oxidized forms of polyunsaturated phosphatidylethanolamines (PEs), which drives cell death. These readily undergo iron-catalyzed secondary free radical reactions leading to truncated products which retain the signature PE headgroup and which can readily react with nucleophilic moieties in proteins via their truncated electrophilic acyl chains. Using a redox lipidomics approach, we have identified oxidatively-truncated PE species (trPEox) in enzymatic and non-enzymatic model systems. Further, using a model peptide we demonstrate adduct formation with Cys as the preferred nucleophilic residue and PE(26:2) +2 oxygens, as one of the most reactive truncated PE-electrophiles produced. In cells stimulated to undergo ferroptosis we identified PE-truncated species with sn-2 truncations ranging from 5 to 9 carbons. Taking advantage of the free PE headgroup, we have developed a new technology using the lantibiotic duramycin, to enrich and identify the PE-lipoxidated proteins. Our results indicate that several dozens of proteins for each cell type, are PE-lipoxidated in HT-22, MLE, and H9c2 cells and M2 macrophages after they were induced to undergo ferroptosis. Pretreatment of cells with the strong nucleophile, 2-mercaptoethanol, prevented the formation of PE-lipoxidated proteins and blocked ferroptotic death. Finally, our docking simulations showed that the truncated PE species bound at least as good to several of the lantibiotic-identified proteins, as compared to the non-truncated parent molecule, stearoyl-arachidonoyl PE (SAPE), indicating that these oxidatively-truncated species favor/promote the formation of PEox-protein adducts. The identification of PEox-protein adducts during ferroptosis suggests that they are participants in the ferroptotic process preventable by 2-mercaptoethanol and may contribute to a point of no return in the ferroptotic death process

    Intraesophageal administratio (JP4-039) and p53/MDM2/MDM4 Inhibitor (BEB55) ameliorates radiation esophagitisn of GS-Nitroxide

    No full text
    Purpose/Objective(s): To evaluate the esophageal radiation dose modification properties of the GS-nitroxide (JP4-039) and the p53/MDM2/MDM4 inhibitor (BEB55). Materials/Methods: Esophagitis is a significant toxicity of radiation therapy of thoracic cancers. We evaluated radiation dose modification in the mouse esophagus by GS-nitroxide (JP4-039) and p53/MDM2/MDM4 inhibitor (BEB55). JP4-039 was administered to C57Bl/6Hnsd mice by tube-feed swallow of a novel F15 liposome formulation. The esophagus was excised and esophageal progenitors (SP) and differentiated (NSP) cells separated by cell sorting. The nitroxide uptake was quantified by electron paramagnetic resonance (EPR). C56BL/6Hnsd mice were treated with BEB55 or JP4-039 swallow immediately prior to 28 Gy upper body irradiation. Additional mice were administered 3LL cells intratracheally to induce orthotopic carinal lung tumors. JP4-039 uptake in liver, peripheral blood and lung orthotopic tumor at 10, 30 and 60 minutes after intraesophageal administration was quantified by EPR (n = 3 / time point). Mice with lung orthotopic tumors were treated with intraesophageal BEB55 or JP4-039 prior to receiving 20 Gy upper body irradiation. Results: JP4-039 nitroxide was detected in higher concentrations in SP cells (275 fmole / 1 x 105cells) compared to NSP cells (221 fmole / 3.3 x 106 cells). Mice that received BEB55 or JP4-039 prior to 28 Gy upper body irradiation showed increased survival compared to mice that received irradiation only (p = 0.033 and p = 0.0001, respectively). JP4-039 nitroxide content in excised esophagus, liver, peripheral blood and orthotopic lung tumor had a peak value 10 minutes after swallow (430.1 ± 21.5, 122.2 ± 49.6, 39.0 ± 9.7, 169.5 ± 67.0 pmol / mg protein, respectively). Lung orthotopic tumor bearing mice that received BEB55 or JP4-039 immediately prior to 20 Gy upper body irradiation demonstrated increased survival compared to mice that received irradiation alone (p = 0.044 and p = 0.023, respectively). While detected after swallow in tumor tissue, esophageal radioprotective JP4-039 nitroxide does not detectably decrease the radiation control of thoracic tumors. Conclusions: Swallowed JP4-039 and BEB55 in F15 liposome formulation ameliorates radiation-induced esophagitis without compromising radiation control of orthotopic tumors

    Empowerment of 15-lipoxygenase catalytic competence in selective oxidation of membrane ETE-PE to ferroptotic death signals, HpETE-PE.

    No full text
    sn2-15-Hydroperoxy-eicasotetraenoyl-phosphatidylethanolamines (sn2-15-HpETE-PE) generated by mammalian 15-lipoxygenase/phosphatidylethanolamine binding protein-1 (15-LO/PEBP1) complex is a death signal in a recently identified type of programmed cell demise, ferroptosis. How the enzymatic complex selects sn2-ETE-PE as the substrate among 1 of similar to 100 total oxidizable membrane PUFA phospholipids is a central, yet unresolved question. To unearth the highly selective and specific mechanisms of catalytic competence, we used a combination of redox lipidomics, mutational and computational structural analysis to show they stem from (i) reactivity toward readily accessible hexagonally organized membrane sn2-ETE-PEs, (ii) relative preponderance of sn2-ETE-PE species vs other sn2-ETE-PLs, and (iii) allosteric modification of the enzyme in the complex with PEBP1. This emphasizes the role of enzymatic vs random stochastic free radical reactions in ferroptotic death signaling

    Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis.

    No full text
    Enigmatic lipid peroxidation products have been claimed as the proximate executioners of ferroptosis-a specialized death program triggered by insufficiency of glutathione peroxidase 4 (GPX4). Using quantitative redox lipidomics, reverse genetics, bioinformatics and systems biology, we discovered that ferroptosis involves a highly organized oxygenation center, wherein oxidation in endoplasmic-reticulum-associated compartments occurs on only one class of phospholipids (phosphatidylethanolamines (PEs)) and is specific toward two fatty acyls-arachidonoyl (AA) and adrenoyl (AdA). Suppression of AA or AdA esterification into PE by genetic or pharmacological inhibition of acyl-CoA synthase 4 (ACSL4) acts as a specific antiferroptotic rescue pathway. Lipoxygenase (LOX) generates doubly and triply-oxygenated (15-hydroperoxy)-diacylated PE species, which act as death signals, and tocopherols and tocotrienols (vitamin E) suppress LOX and protect against ferroptosis, suggesting a homeostatic physiological role for vitamin E. This oxidative PE death pathway may also represent a target for drug discovery
    corecore