3,270 research outputs found
Spectrum occupancy measurements and lessons learned in the context of cognitive radio
Various measurement campaigns have shown that numerous spectrum bands are vacant even though licenses have been issued by the regulatory agencies. Dynamic spectrum access (DSA) based on Cognitive Radio (CR) has been regarded as a prospective solution to improve spectrum utilization for wireless communications. Empirical measurement of the radio environment to promote understanding of the current spectrum usage of the different wireless services is the first step towards deployment of future CR networks. In this paper we present our spectrum measurement setup and discuss lessons learned during our measurement activities. The main contribution of the paper is to introduce global spectrum occupancy measurements and address the major drawbacks of previous spectrum occupancy studies by providing a unifying methodological framework for future spectrum measurement campaigns
Experimental detection using cyclostationary feature detectors for cognitive radios
© 2014 IEEE. Signal detection is widely used in many applications. Some examples include Cognitive Radio (CR) and military intelligence. Without guaranteed signal detection, a CR cannot reliably perform its role. Spectrum sensing is currently one of the most challenging problems in cognitive radio design because of various factors such as multi-path fading and signal to noise ratio (SNR). In this paper, we particularly focus on the detection method based on cyclostationary feature detectors (CFD) estimation. The advantage of CFD is its relative robustness against noise uncertainty compared with energy detection methods. The experimental result present in this paper show that the cyclostationary feature-based detection can be robust compared to energy-based technique for low SNR levels
Cooperative wideband spectrum sensing with multi-bit hard decision in cognitive radio
Cognitive radio offers an increasingly attractive solution to overcome the underutilization problem. A sensor network based cooperative wideband spectrum sensing is proposed in this paper. The purpose of the sensor network is to determine the frequencies of the sources and reduced the total sensing time using a multi-resolution sensing technique. The final result is computed by data fusion of multi-bit decisions made by each cooperating secondary user. Simulation results show improved performance in energy efficiency
Quality measurements of an UWB reduced-size CPW-fed aperture antenna
The paper presents a characterization of a compact co-planar waveguide (CPW)-fed slot loaded low return loss planar printed antenna designed for wireless communication and ultra-wideband (UWB) applications. Following a review of the antenna design, which was implemented and simulated using Agilent's Advanced Design System (ADS), the paper presents laboratory measurements of relative gain and impulse response transformed from the frequency domain. An antenna quality metric based on time-domain S21 is discussed and related to antenna quality metrics such as the System Fidelity Factor (SFF)
Lymphatic expression of CLEVER-1 in breast cancer and its relationship with lymph node metastasis
BACKGROUND
Mechanisms regulating breast cancer lymph node metastasis are unclear. Staining of CLEVER-1 (common lymphatic endothelial and vascular endothelial receptor-1) in human breast tumors was used, along with in vitro techniques, to assess involvement in the metastatic process.
METHODS
148 sections of primary invasive breast cancers, with 10 yr follow-up, were stained with anti-CLEVER-1. Leukocyte infiltration was assessed, along with involvement of specific subpopulations by staining with CD83 (mature dendritic cells, mDC), CD209 (immature DC, iDC) and CD68 (macrophage, Mϕ). In vitro expression of CLEVER-1 on lymphatic (LEC) and blood endothelial cells (BEC) was examined by flow cytometry.
RESULTS
In vitro results showed that although both endothelial cell types express CLEVER-1, surface expression was only evident on LEC. In tumour sections CLEVER-1 was expressed in blood vessels (BV, 61.4% of samples), lymphatic vessels (LV, 18.2% of samples) and in Mϕ/DCs (82.4% of samples). However, only CLEVER-1 expression in LV was associated with LN metastasis (p = 0.027) and with Mϕ indices (p = 0.021). Although LV CLEVER-1 was associated with LN positivity there was no significant correlation with recurrence or overall survival, BV CLEVER-1 expression was, however, associated with increased risk of recurrence (p = 0.049). The density of inflammatory infiltrate correlated with CLEVER-1 expression in BV (p < 0.001) and LV (p = 0.004).
CONCLUSIONS
The associations between CLEVER-1 expression on endothelial vessels and macrophage/leukocyte infiltration is suggestive of its regulation by inflammatory conditions in breast cancer, most likely by macrophage-associated cytokines. Its upregulation on LV, related surface expression, and association with LN metastasis suggest that it may be an important mediator of tumor cell metastasis to LN
Ultrastructure of the salivary glands, alimentary canal and bacteria-like organisms in the Asian citrus psyllid, vector of citrus huanglongbing disease bacteria
AbstractThe Asian citrus psyllid (ACP, Diaphorina citri, Hemiptera: Liviidae) is the principal vector of Candidatus Liberibacter asiaticus (Las), the putative bacterial agent of citrus greening/huanglongbing (HLB); currently the most serious citrus disease worldwide. Las is transmitted in a persistent–propagative manner by ACP, and the salivary glands and midgut have been suggested as transmission barriers that can impede translocation of Las within the vector. However, no detailed ultrastructural studies have been reported on these organs in this or other psyllid species, although some bacterium-like structures have been described in them and assumed to be the causal agents of HLB. In this study, we describe the ultrastructure of the salivary glands, filter chamber, other parts of the alimentary canal, and other organs and tissues of ACP including the compound ganglionic mass (in the thorax) and the bacteriome (in the abdomen). Furthermore, in addition to two ultrastructurally apparently different symbiotic bacteria found in the bacteriome, other morphological types of bacteria were found in the gut epithelial cells and salivary glands of both Las-infected (quantitative polymerase chain reaction positive) and noninfected (quantitative polymerase chain reaction negative) ACP. These results show the importance of immunolabeling, fluorescence in situ hybridization, or other labeling techniques that must be used before identifying any bacterium-like structures in ACP or other vectors as Las or other possible agents of HLB. This ultrastructural investigation should help future work on the cellular and subcellular aspects of pathogen–psyllid relationships, including the study of receptors, binding sites, and transmission barriers of Las and other pathogens within their psyllid vectors
Effects of ultrasonic treatments on the polyphenol and antioxidant content of spinach extracts
The objective was to test ultrasound treatments on spinach leaves during extraction, and conventional extraction was used as a control. The effects of different combinations of the ultrasonic water bath factors tested on phenolic compound yields included frequency (37 and 80 kHz), exposure time (5, 10, 15, 20, 25 and 30 min), temperature (30, 40, and 50 C), and ultrasonic power (30%, 50%, and 70%). The best conditions for extraction yields were ultrasonic frequency of 37 kHz, extraction time of 30 min, reaction temperature of 40 C, and ultrasonic power of 50%. The mean yield (mg/100 g), total phenol (mg gallic acid/g DW), flavonoids (mg/g DW), % DPPH free-radical scavenging activity, and % ferric reducing antioxidant power were all high (64.88 ± 21.84, 33.96 ± 11.30, 27.37 ± 11.85, 64.18 ± 16.69 and 70.25 ± 9.68). Treatments were significantly different. The interaction among the ultrasonic parameters was significant. Temperature and power had significant effects on all other dependent variables
Simultaneous extraction, optimization, and analysis of flavonoids and polyphenols from peach and pumpkin extracts using a TLC-densitometric method
Background: The use of medicinal plants has been reported throughout human history. In the fight against illnesses, medicinal plants represent the primary health care system for 60 % of the world’s population. Flavonoids are polyphenolic compounds with active anti-microbial properties; they are produced in plants as pigments. Quercetin, myricetin, and rutin are among the most well-known and prevalent flavonoids in plants, with an antioxidant activity capable of decreasing the oxidation of low density lipoproteins [LDLs]. To date, this research is the first of its kind to employ a coupled thin-layer chromatography (TLC) and a densitometric quantification method with a Box-Behnken design (BBD) response surface methodology (RSM) for optimization of ultrasonic-assisted extraction and determination of rutin and quercetin from peach and ellagic acid and myricetin from pumpkin fruits.
Results: The effect of process variables (extraction temperature (°C), extraction power (%) and extraction time (min)) on ultrasound-assisted extraction (UAE) were examined by using BBD and RSM. TLC followed by Quantity-One™ (BioRad) image analysis as a simple and rapid method was used for identification and quantification of the compounds in complex mixtures. The results were consistent under optimal conditions among the experimental values and their predicted values. A mass spectrometry (MALDI-TOF MS) technique was also used to confirm the identity of the natural products in the TLC spots resolved.
Conclusion: The results show that the coupled TLC-densitometric methods & BBD can be a very powerful approach to qualitative and quantitative analysis of; rutin and quercetin from peach extracts; and ellagic acid and myricetin contents from pumpkin extracts
- …