3 research outputs found

    A Nanoprobe Based on Gated Mesoporous Silica Nanoparticles for The Selective and Sensitive Detection of Benzene Metabolite t,t-Muconic Acid in Urine

    Full text link
    This is the peer reviewed version of the following article: [FULL CITE], which has been published in final form at [Link to final article using the DOI]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Benzene is a highly toxic aromatic hydrocarbon. Inhaling benzene can cause dizziness, vertigo, headaches, aplasia, mutations and, in the most extreme cases, cancer. Trans,trans-muconic acid (t,t-MA) is one of the metabolization products of benzene. Although different analytical methods have been reported for the determination of t,t-MA, these are often expensive, require trained personnel, are not suitable for on-site measurements, and use hazardous organic solvents. For these reasons, the development of reliable, selective and sensitive methods for rapid and in situ detection of t,t-MA are of importance. Addressing this challenge, a nanodevice for the selective and sensitive quantification of t,t-MA in urine is reported. The nanodevice used is achieved using mesoporous silica nanoparticles loaded with a dye reporter and capped with a dicopper(II) azacryptand. Pore opening and payload release is induced rapidly (10 min) and selectively with t,t-MA in urine, using a simple fluorimeter without sample pretreatment.The authors thank the Spanish Government (RTI2018-100910-B-C41) and the Generalitat Valenciana (PROMETEO 2018/024) for support.Domínguez-Rodríguez, M.; Blandez, JF.; Lozano-Torres, B.; De La Torre-Paredes, C.; Licchelli, M.; Mangano, C.; Amendola, V.... (2021). A Nanoprobe Based on Gated Mesoporous Silica Nanoparticles for The Selective and Sensitive Detection of Benzene Metabolite t,t-Muconic Acid in Urine. Chemistry - A European Journal. 27(4):1306-1310. https://doi.org/10.1002/chem.202004272S13061310274Agency for Toxic Substances and Disease Registry Toxicological Profile for Benzene US Department of Health and Human Services Public Health Service ATSDR Atlanta GA 2007.Gustafson, P., Barregard, L., Strandberg, B., & Sällsten, G. (2007). The impact of domestic wood burning on personal, indoor and outdoor levels of 1,3-butadiene, benzene, formaldehyde and acetaldehyde. J. Environ. Monit., 9(1), 23-32. doi:10.1039/b614142kDuarte-Davidson, R. (2001). Benzene in the environment: an assessment of the potential risks to the health of the population. Occupational and Environmental Medicine, 58(1), 2-13. doi:10.1136/oem.58.1.2Toxicological Profile for Benzene US Department of Health and Human Services Agency for Toxic Substances and Disease Registry Atlanta GA 2007.Snyder, R. (2000). OVERVIEW OF THE TOXICOLOGY OF BENZENE. Journal of Toxicology and Environmental Health, Part A, 61(5-6), 339-346. doi:10.1080/00984100050166334Weisel, C. P. (2010). Benzene exposure: An overview of monitoring methods and their findings. Chemico-Biological Interactions, 184(1-2), 58-66. doi:10.1016/j.cbi.2009.12.030Mudiam, M. K. R., Chauhan, A., Singh, K. P., Gupta, S. K., Jain, R., Ch, R., & Murthy, R. C. (2012). Determination of t,t-muconic acid in urine samples using a molecular imprinted polymer combined with simultaneous ethyl chloroformate derivatization and pre-concentration by dispersive liquid–liquid microextraction. Analytical and Bioanalytical Chemistry, 405(1), 341-349. doi:10.1007/s00216-012-6474-9KOH, D.-H., LEE, M.-Y., CHUNG, E.-K., JANG, J.-K., & PARK, D.-U. (2018). Comparison of personal air benzene and urine t,t-muconic acid as a benzene exposure surrogate during turnaround maintenance in petrochemical plants. Industrial Health, 56(4), 346-355. doi:10.2486/indhealth.2017-0225LARC Benzene 2012.Wiwanitkit, V., Soogarun, S., & Suwansaksri, J. (2004). Urine Phenol and Myeloperoxidase Index: An Observation in Benzene Exposed Subjects. Leukemia & Lymphoma, 45(8), 1643-1645. doi:10.1080/10428190410001693515Lovreglio, P., D’Errico, M. N., Fustinoni, S., Drago, I., Barbieri, A., Sabatini, L., … Soleo, L. (2011). Biomarkers of internal dose for the assessment of environmental exposure to benzene. Journal of Environmental Monitoring, 13(10), 2921. doi:10.1039/c1em10512dScherer, G., Renner, T., & Meger, M. (1998). Analysis and evaluation of trans,trans-muconic acid as a biomarker for benzene exposure. Journal of Chromatography B: Biomedical Sciences and Applications, 717(1-2), 179-199. doi:10.1016/s0378-4347(98)00065-6American Conference of Governmental Industrial Hygienists. Threshold Limit Values and Biological Exposure Indices ACGIH Cincinnati 2010.Waidyanatha, S., Rothman, N., Fustinoni, S., Smith, M. T., Hayes, R. B., Bechtold, W., … Rappaport, S. M. (2001). Urinary benzene as a biomarker of exposure among occupationally exposed and unexposed subjects. Carcinogenesis, 22(2), 279-286. doi:10.1093/carcin/22.2.279Jamaleddin Shahtaheri, S., Ghamari, F., Golbabaei, F., Rahimi-Froushani, A., & Abdollahi, M. (2005). Sample Preparation Followed by High Performance Liquid Chromatographic (HPLC) Analysis for Monitoring Muconic Acid as a Biomarker of Occupational Exposure to Benzene. International Journal of Occupational Safety and Ergonomics, 11(4), 377-388. doi:10.1080/10803548.2005.11076658Soleimani, E., Bahrami, A., Afkhami, A., & Shahna, F. G. (2017). Determination of urinary trans,trans-muconic acid using molecularly imprinted polymer in microextraction by packed sorbent followed by liquid chromatography with ultraviolet detection. Journal of Chromatography B, 1061-1062, 65-71. doi:10.1016/j.jchromb.2017.07.008Rismanchian, M., Ebrahim, K., & Ordudari, Z. (2019). Development of a simple and rapid method for determination of trans, trans-Muconic Acid in human urine using PDLLME preconcentration and HPLC–UV detection. Chemical Papers, 73(10), 2485-2492. doi:10.1007/s11696-019-00800-2Soleimani, E., Bahrami, A., Afkhami, A., & Shahna, F. G. (2017). Rapid analysis of trans,trans-muconic acid in urine using microextraction by packed sorbent. Toxicology and Environmental Health Sciences, 9(5), 317-324. doi:10.1007/s13530-017-0337-xMoein, M. M., Abdel-Rehim, A., & Abdel-Rehim, M. (2015). Microextraction by packed sorbent (MEPS). TrAC Trends in Analytical Chemistry, 67, 34-44. doi:10.1016/j.trac.2014.12.003TRANFO, G., PACI, E., SISTO, R., & PIGINI, D. (2008). Validation of an HPLC/MS/MS method with isotopic dilution for quantitative determination of trans,trans-muconic acid in urine samples of workers exposed to low benzene concentrations. Journal of Chromatography B, 867(1), 26-31. doi:10.1016/j.jchromb.2008.03.004Vieira, A. C., Zampieri, R. A., de Siqueira, M. E. P. B., Martins, I., & Figueiredo, E. C. (2012). Molecularly imprinted solid-phase extraction and high-performance liquid chromatography with ultraviolet detection for the determination of urinary trans,trans-muconic acid: a comparison with ionic exchange extraction. The Analyst, 137(10), 2462. doi:10.1039/c2an16215fGhamari, F., Bahrami, A., Yamini, Y., Shahna, F. G., & Moghimbeigi, A. (2016). Development of Hollow-Fiber Liquid-Phase Microextraction Method for Determination of Urinary trans, trans-Muconic Acid as a Biomarker of Benzene Exposure. Analytical Chemistry Insights, 11, ACI.S40177. doi:10.4137/aci.s40177Gagné, S. (2012). Determination oftrans,trans-muconic acid in workers’ urine through ultra-performance liquid chromatography coupled to tandem mass spectrometry. Biomedical Chromatography, 27(5), 664-668. doi:10.1002/bmc.2844Mateos, R., Vera-López, S., Saz, M., Díez-Pascual, A. M., & San Andrés, M. P. (2019). Graphene/sepiolite mixtures as dispersive solid-phase extraction sorbents for the anaysis of polycyclic aromatic hydrocarbons in wastewater using surfactant aqueous solutions for desorption. Journal of Chromatography A, 1596, 30-40. doi:10.1016/j.chroma.2019.03.004Ji, Q., Qiao, X., Liu, X., Jia, H., Yu, J.-S., & Ariga, K. (2018). Enhanced Adsorption Selectivity of Aromatic Vapors in Carbon Capsule Film by Control of Surface Surfactants on Carbon Capsule. Bulletin of the Chemical Society of Japan, 91(3), 391-397. doi:10.1246/bcsj.20170357Alibrandi, G., Amendola, V., Bergamaschi, G., Fabbrizzi, L., & Licchelli, M. (2015). Bistren cryptands and cryptates: versatile receptors for anion inclusion and recognition in water. Organic & Biomolecular Chemistry, 13(12), 3510-3524. doi:10.1039/c4ob02618gBoiocchi, M., Bonizzoni, M., Fabbrizzi, L., Piovani, G., & Taglietti, A. (2004). A Dimetallic Cage with a Long Ellipsoidal Cavity for the Fluorescent Detection of Dicarboxylate Anions in Water. Angewandte Chemie International Edition, 43(29), 3847-3852. doi:10.1002/anie.200460036Boiocchi, M., Bonizzoni, M., Fabbrizzi, L., Piovani, G., & Taglietti, A. (2004). A Dimetallic Cage with a Long Ellipsoidal Cavity for the Fluorescent Detection of Dicarboxylate Anions in Water. Angewandte Chemie, 116(29), 3935-3940. doi:10.1002/ange.200460036Pallavicini, P., Amendola, V., Bergamaschi, G., Cabrini, E., Dacarro, G., Rossi, N., & Taglietti, A. (2016). A bistren cryptand with a remote thioether function: Cu(ii) complexation in solution and on the surface of gold nanostars. New Journal of Chemistry, 40(7), 5722-5730. doi:10.1039/c5nj03175cAmendola, V., Bergamaschi, G., & Miljkovic, A. (2017). Azacryptands as molecular cages for anions and metal ions. Supramolecular Chemistry, 30(4), 236-242. doi:10.1080/10610278.2017.1339885Merli, D., La Cognata, S., Balduzzi, F., Miljkovic, A., Toma, L., & Amendola, V. (2018). A smart supramolecular device for the detection of t,t-muconic acid in urine. New Journal of Chemistry, 42(18), 15460-15465. doi:10.1039/c8nj02156bColl, C., Casasús, R., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2007). Nanoscopic hybrid systems with a polarity-controlled gate-like scaffolding for the colorimetric signalling of long-chain carboxylates. Chem. Commun., (19), 1957-1959. doi:10.1039/b617703dAznar, E., Coll, C., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Ruiz, E. (2009). Borate-Driven Gatelike Scaffolding Using Mesoporous Materials Functionalised with Saccharides. Chemistry - A European Journal, 15(28), 6877-6888. doi:10.1002/chem.200900090Aznar, E., Villalonga, R., Giménez, C., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2013). Glucose-triggered release using enzyme-gated mesoporous silica nanoparticles. Chemical Communications, 49(57), 6391. doi:10.1039/c3cc42210kMondragón, L., Mas, N., Ferragud, V., de la Torre, C., Agostini, A., Martínez-Máñez, R., … Orzáez, M. (2014). Enzyme-Responsive Intracellular-Controlled Release Using Silica Mesoporous Nanoparticles Capped with ε-Poly-L-lysine. Chemistry - A European Journal, 20(18), 5271-5281. doi:10.1002/chem.201400148Sayed, S. E., Licchelli, M., Martínez-Máñez, R., & Sancenón, F. (2017). Capped Mesoporous Silica Nanoparticles for the Selective and Sensitive Detection of Cyanide. Chemistry - An Asian Journal, 12(20), 2670-2674. doi:10.1002/asia.201701130El Sayed, S., Milani, M., Milanese, C., Licchelli, M., Martínez-Máñez, R., & Sancenón, F. (2016). Anions as Triggers in Controlled Release Protocols from Mesoporous Silica Nanoparticles Functionalized with Macrocyclic Copper(II) Complexes. Chemistry - A European Journal, 22(39), 13935-13945. doi:10.1002/chem.201601024El Sayed, S., Milani, M., Licchelli, M., Martínez-Máñez, R., & Sancenón, F. (2015). Hexametaphosphate-Capped Silica Mesoporous Nanoparticles Containing CuIIComplexes for the Selective and Sensitive Optical Detection of Hydrogen Sulfide in Water. Chemistry - A European Journal, 21(19), 7002-7006. doi:10.1002/chem.201500360El Sayed, S., Giménez, C., Aznar, E., Martínez-Máñez, R., Sancenón, F., & Licchelli, M. (2015). Highly selective and sensitive detection of glutathione using mesoporous silica nanoparticles capped with disulfide-containing oligo(ethylene glycol) chains. Organic & Biomolecular Chemistry, 13(4), 1017-1021. doi:10.1039/c4ob02083aGarcía‐Fernández, A., Aznar, E., Martínez‐Máñez, R., & Sancenón, F. (2019). New Advances in In Vivo Applications of Gated Mesoporous Silica as Drug Delivery Nanocarriers. Small, 16(3), 1902242. doi:10.1002/smll.201902242Llopis-Lorente, A., Lozano-Torres, B., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2017). Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 5(17), 3069-3083. doi:10.1039/c7tb00348jKresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0Wu, S.-H., Mou, C.-Y., & Lin, H.-P. (2013). Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews, 42(9), 3862. doi:10.1039/c3cs35405
    corecore