24 research outputs found

    In vivo and ex vivo percutaneous absorption of [14C]-bisphenol A in rats: a possible extrapolation to human absorption?

    Get PDF
    Bisphenol A (BPA) is a monomer used mainly in the synthesis of polycarbonates and epoxy resins. Percutaneous absorption is the second source of exposure, after inhalation, in the work environment. However, studies on this route of absorption are lacking or incomplete. In this study, percutaneous BPA absorption was measured in vivo and ex vivo in the rat, and ex vivo in humans. An approximately 12-fold difference in permeability between rat skin and human skin was found, with permeability being higher in the rat. In addition, inter- and intra-individual variability of up to tenfold was observed in humans. No accumulation of BPA in the skin was found during exposure. The skin clearance rate following exposure was estimated at 0.4 Όg/cmÂČ/h. Ex vivo and in vivo percutaneous absorption fluxes of BPA in the rat were in the same range (about 2.0 Όg/cmÂČ/h), suggesting that extrapolation to the in vivo situation in humans may be possible. The European tolerable daily intake (TDI) of BPA is 50 Όg/kg body weight. However, many research projects have highlighted the significant effects of BPA in rodents at doses lower than 10 Όg/kg/day. A 1-h occupational exposure over 2,000 cmÂČ (forearms and hands) may lead to a BPA absorption of 4 Όg/kg/day. This is 8% of the European TDI and is very close to the value at which effects have been observed in animals. This absorption must therefore be taken into account when evaluating risks of BPA exposure, at least until more relevant results on the toxicity of BPA in humans are available

    Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models

    Get PDF

    Increased protein degradation improves influenza virus nucleoprotein-specific CD8âș T cell activation in vitro but not in C57BL/6 mice

    No full text
    Due to antigenic drift of influenza viruses, seasonal influenza vaccines need to be updated annually. These vaccines are based on predictions of strains likely to circulate in the next season. However, vaccine efficacy is greatly reduced in the case of a mismatch between circulating and vaccine strains. Furthermore, novel antigenically distinct influenza viruses are introduced into the human population from animal reservoirs occasionally and may cause pandemic outbreaks. To dampen the impact of seasonal and pandemic influenza, vaccines that induce broadly protective and long-lasting immunity are preferred. Because influenza virusspecific CD8(+) T cells are directed mainly against relatively conserved internal proteins, like nucleoprotein (NP), they are highly cross-reactive and afford protection against infection with antigenically distinct influenza virus strains, so-called heterosubtypic immunity. Here, we used modified vaccinia virus Ankara (MVA) as a vaccine vector for the induction of influenza virus NP-specific CD8(+) T cells. To optimize the induction of CD8(+) T cell responses, we made several modifications to NP, aiming at retaining the protein in the cytosol or targeting it to the proteasome. We hypothesized that these strategies would increase antigen processing and presentation and thus improve the induction of CD8 (+) T cell responses. We showed that NP with increased degradation rates improved CD8(+) T cell activation in vitro if the amount of antigen was limited or if CD8 (+) T cells were of low functional avidity. However, after immunization of C57BL/6 mice, no differences were detected between modified NP and wild-type NP (NPwt), since NPwt already induced optimal CD8(+) T cell responses. IMPORTANCE : Due to the continuous antigenic drift of seasonal influenza viruses and the threat of a novel pandemic, there is a great need for the development of novel influenza vaccines that offer broadly protective immunity against multiple subtypes. CD8(+) T cells can provide immunity against multiple subtypes of influenza viruses by the recognition of relatively conserved internal antigens. In this study, we aimed at optimizing the CD8(+) T cell response to influenza A virus by making modifications to influenza A virus nucleoprotein (NP) expressed from the modified vaccinia virus Ankara (MVA) vaccine vector. These modifications resulted in increased antigen degradation, thereby producing elevated levels of peptides that can be presented on major histocompatibility complex (MHC) class I molecules to CD8(+) T cells. Although we were unable to increase the NP-specific immune response in the mouse strain used, this approach may have benefits for vaccine development using less-immunogenic proteins

    Increased Protein Degradation Improves Influenza Virus Nucleoprotein-Specific CD8 +

    No full text
    Due to antigenic drift of influenza viruses, seasonal influenza vaccines need to be updated annually. These vaccines are based on predictions of strains likely to circulate in the next season. However, vaccine efficacy is greatly reduced in the case of a mismatch between circulating and vaccine strains. Furthermore, novel antigenically distinct influenza viruses are introduced into the human population from animal reservoirs occasionally and may cause pandemic outbreaks. To dampen the impact of seasonal and pandemic influenza, vaccines that induce broadly protective and long-lasting immunity are preferred. Because influenza virusspecific CD8(+) T cells are directed mainly against relatively conserved internal proteins, like nucleoprotein (NP), they are highly cross-reactive and afford protection against infection with antigenically distinct influenza virus strains, so-called heterosubtypic immunity. Here, we used modified vaccinia virus Ankara (MVA) as a vaccine vector for the induction of influenza virus NP-specific CD8(+) T cells. To optimize the induction of CD8(+) T cell responses, we made several modifications to NP, aiming at retaining the protein in the cytosol or targeting it to the proteasome. We hypothesized that these strategies would increase antigen processing and presentation and thus improve the induction of CD8 (+) T cell responses. We showed that NP with increased degradation rates improved CD8(+) T cell activation in vitro if the amount of antigen was limited or if CD8 (+) T cells were of low functional avidity. However, after immunization of C57BL/6 mice, no differences were detected between modified NP and wild-type NP (NPwt), since NPwt already induced optimal CD8(+) T cell responses. IMPORTANCE : Due to the continuous antigenic drift of seasonal influenza viruses and the threat of a novel pandemic, there is a great need for the development of novel influenza vaccines that offer broadly protective immunity against multiple subtypes. CD8(+) T cells can provide immunity against multiple subtypes of influenza viruses by the recognition of relatively conserved internal antigens. In this study, we aimed at optimizing the CD8(+) T cell response to influenza A virus by making modifications to influenza A virus nucleoprotein (NP) expressed from the modified vaccinia virus Ankara (MVA) vaccine vector. These modifications resulted in increased antigen degradation, thereby producing elevated levels of peptides that can be presented on major histocompatibility complex (MHC) class I molecules to CD8(+) T cells. Although we were unable to increase the NP-specific immune response in the mouse strain used, this approach may have benefits for vaccine development using less-immunogenic proteins
    corecore