26 research outputs found

    Genomic organization and alternative splicing of the human and mouse RPTPρ genes

    Get PDF
    BACKGROUND: Receptor protein tyrosine phosphatase rho (RPTPρ, gene symbol PTPRT) is a member of the type IIB RPTP family. These transmembrane molecules have been linked to signal transduction, cell adhesion and neurite extension. The extracellular segment contains MAM, Ig-like and fibronectin type III domains, and the intracellular segment contains two phosphatase domains. The human RPTPρ gene is located on chromosome 20q12-13.1, and the mouse gene is located on a syntenic region of chromosome 2. RPTPρ expression is restricted to the central nervous system. RESULTS: The cloning of the mouse cDNA, identification of alternatively spliced exons, detection of an 8 kb 3'-UTR, and the genomic organization of human and mouse RPTPρ genes are described. The two genes are comprised of at least 33 exons. Both RPTPρ genes span over 1 Mbp and are the largest RPTP genes characterized. Exons encoding the extracellular segment through the intracellular juxtamembrane 'wedge' region are widely spaced, with introns ranging from 9.7 to 303.7 kb. In contrast, exons encoding the two phosphatase domains are more tightly clustered, with 15 exons spanning ∌ 60 kb, and introns ranging in size from 0.6 kb to 13.1 kb. Phase 0 introns predominate in the intracellular, and phase 1 in the extracellular segment. CONCLUSIONS: We report the first genomic characterization of a RPTP type IIB gene. Alternatively spliced variants may result in different RPTPρ isoforms. Our findings suggest that RPTPρ extracellular and intracellular segments originated as separate modular proteins that fused into a single transmembrane molecule during a later evolutionary period

    Pattern and determinants of BCG immunisation delays in a sub-Saharan African community

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Childhood immunisation is recognised worldwide as an essential component of health systems and an indispensable indicator of quality of care for vaccine-preventable diseases. While performance of immunisation programmes is more commonly measured by coverage, ensuring that every child is immunised at the earliest/appropriate age is an important public health goal. This study therefore set out to determine the pattern and predictors of Bacille de Calmette-Guérin (BCG) immunisation delays in the first three months of life in a Sub-Saharan African community where BCG is scheduled at birth in order to facilitate necessary changes in current policy and practices for improved services.</p> <p>Methods</p> <p>A cross-sectional study in which immunisation delays among infants aged 0-3 months attending community-based BCG clinics in Lagos, Nigeria over a 2-year period from July 2005 to June 2007 were assessed by survival analysis and associated factors determined by multivariable logistic regression. Population attributable risk (PAR) was computed for the predictors of delays.</p> <p>Results</p> <p>BCG was delayed beyond three months in 31.6% of all eligible infants. Of 5171 infants enrolled, 3380 (65.4%) were immunised within two weeks and a further 1265 (24.5%) by six weeks. A significantly higher proportion of infants born in hospitals were vaccinated in the first six weeks compared to those born outside hospitals. Undernourishment was predictive of delays beyond 2 and 6 weeks while treated hyperbilirubinaemia was associated with decreased odds for any delays. Lack of antenatal care and multiple gestations were also predictive of delays beyond 6 weeks. Undernourishment was associated with the highest PAR for delays beyond 2 weeks (18.7%) and 6 weeks (20.8%).</p> <p>Conclusions</p> <p>BCG immunisation is associated with significant delays in this setting and infants at increased risk of delays can be identified and supported early possibly through improved maternal uptake of antenatal care. Combining BCG with subsequent immunisation(s) at 6 weeks for infants who missed the BCG may be considered.</p

    Molecular analysis of receptor protein tyrosine phosphatase Ό-mediated cell adhesion

    No full text
    Type IIB receptor protein tyrosine phosphatases (RPTPs) are bi-functional cell surface molecules. Their ectodomains mediate stable, homophilic, cell-adhesive interactions, whereas the intracellular catalytic regions can modulate the phosphorylation state of cadherin/catenin complexes. We describe a systematic investigation of the cell-adhesive properties of the extracellular region of RPTPΌ, a prototypical type IIB RPTP. The crystal structure of a construct comprising its N-terminal MAM (meprin/A5/Ό) and Ig domains was determined at 2.7 Šresolution; this assigns the MAM fold to the jelly-roll family and reveals extensive interactions between the two domains, which form a rigid structural unit. Structure-based site-directed mutagenesis, serial domain deletions and cell-adhesion assays allowed us to identify the four N-terminal domains (MAM, Ig, fibronectin type III (FNIII)-1 and FNIII-2) as a minimal functional unit. Biophysical characterization revealed at least two independent types of homophilic interaction which, taken together, suggest that there is the potential for formation of a complex and possibly ordered array of receptor molecules at cell contact sites
    corecore