19 research outputs found

    GABAB Receptor Subunit GB1 at the Cell Surface Independently Activates ERK1/2 through IGF-1R Transactivation

    Get PDF
    BACKGROUND: Functional GABA(B) receptor is believed to require hetero-dimerization between GABA(B1) (GB1) and GABA(B2) (GB2) subunits. The GB1 extracellular domain is required for ligand binding, and the GB2 trans-membrane domain is responsible for coupling to G proteins. Atypical GABA(B) receptor responses observed in GB2-deficient mice suggested that GB1 may have activity in the absence of GB2. However the underlying mechanisms remain poorly characterized. METHODOLOGY/PRINCIPAL FINDINGS: Here, by using cells overexpressing a GB1 mutant (GB1asa) with the ability to translocate to the cell surface in the absence of GB2, we show that GABA(B) receptor agonists, such as GABA and Baclofen, can induce ERK1/2 phosphorylation in the absence of GB2. Furthermore, we demonstrate that GB1asa induces ERK1/2 phosphorylation through Gi/o proteins and PLC dependent IGF-1R transactivation. CONCLUSIONS/SIGNIFICANCE: Our data suggest that GB1 may form a functional receptor at the cell surface in the absence of GB2

    Phosphorylation of AMPA Receptors Is Required for Sensory Deprivation-Induced Homeostatic Synaptic Plasticity

    Get PDF
    Sensory experience, and the lack thereof, can alter the function of excitatory synapses in the primary sensory cortices. Recent evidence suggests that changes in sensory experience can regulate the synaptic level of Ca2+-permeable AMPA receptors (CP-AMPARs). However, the molecular mechanisms underlying such a process have not been determined. We found that binocular visual deprivation, which is a well-established in vivo model to produce multiplicative synaptic scaling in visual cortex of juvenile rodents, is accompanied by an increase in the phosphorylation of AMPAR GluR1 (or GluA1) subunit at the serine 845 (S845) site and the appearance of CP-AMPARs at synapses. To address the role of GluR1-S845 in visual deprivation-induced homeostatic synaptic plasticity, we used mice lacking key phosphorylation sites on the GluR1 subunit. We found that mice specifically lacking the GluR1-S845 site (GluR1-S845A mutants), which is a substrate of cAMP-dependent kinase (PKA), show abnormal basal excitatory synaptic transmission and lack visual deprivation-induced homeostatic synaptic plasticity. We also found evidence that increasing GluR1-S845 phosphorylation alone is not sufficient to produce normal multiplicative synaptic scaling. Our study provides concrete evidence that a GluR1 dependent mechanism, especially S845 phosphorylation, is a necessary pre-requisite step for in vivo homeostatic synaptic plasticity

    Inducible and reversible enhancement of learning, memory, and long-term potentiation by genetic inhibition of calcineurin

    Get PDF
    AbstractThe threshold for hippocampal-dependent synaptic plasticity and memory storage is thought to be determined by the balance between protein phosphorylation and dephosphorylation mediated by the kinase PKA and the phosphatase calcineurin. To establish whether endogenous calcineurin acts as an inhibitory constraint in this balance, we examined the effect of genetically inhibiting calcineurin on plasticity and memory. Using the doxycycline-dependent rtTA system to express a calcineurin inhibitor reversibly in the mouse brain, we find that the transient reduction of calcineurin activity facilitates LTP in vitro and in vivo. This facilitation is PKA dependent and persists over several days in vivo. It is accompanied by enhanced learning and strengthened short- and long-term memory in several hippocampal-dependent spatial and nonspatial tasks. The LTP and memory improvements are reversed fully by suppression of transgene expression. These results demonstrate that endogenous calcineurin constrains LTP and memory

    Assembly of a β2-adrenergic receptor—GluR1 signalling complex for localized cAMP signalling

    Get PDF
    Central noradrenergic signalling mediates arousal and facilitates learning through unknown molecular mechanisms. Here, we show that the β2-adrenergic receptor (β2AR), the trimeric Gs protein, adenylyl cyclase, and PKA form a signalling complex with the AMPA-type glutamate receptor subunit GluR1, which is linked to the β2AR through stargazin and PSD-95 and their homologues. Only GluR1 associated with the β2AR is phosphorylated by PKA on β2AR stimulation. Peptides that interfere with the β2AR–GluR1 association prevent this phosphorylation of GluR1. This phosphorylation increases GluR1 surface expression at postsynaptic sites and amplitudes of EPSCs and mEPSCs in prefrontal cortex slices. Assembly of all proteins involved in the classic β2AR–cAMP cascade into a supramolecular signalling complex and thus allows highly localized and selective regulation of one of its major target proteins

    SAP97 Controls the Trafficking and Resensitization of the Beta-1-Adrenergic Receptor through Its PDZ2 and I3 Domains

    Get PDF
    Previous studies have determined that the type-1 PDZ sequence at the extreme carboxy-terminus of the ß(1)-adrenergic receptor (ß(1)-AR) binds SAP97 and AKAP79 to organize a scaffold involved in trafficking of the ß(1)-AR. In this study we focused on characterizing the domains in SAP97 that were involved in recycling and resensitization of the ß(1)-AR in HEK-293 cells. Using a SAP97 knockdown and rescue strategy, we determined that PDZ-deletion mutants of SAP97 containing PDZ2 rescued the recycling and resensitization of the ß(1)-AR. Among the three PDZs of SAP97, PDZ2 displayed the highest affinity in binding to the ß(1)-AR. Expression of isolated PDZ2, but not the other PDZs, inhibited the recycling of the ß(1)-AR by destabilizing the macromolecular complex involved in trafficking and functional resensitization of the ß(1)-AR. In addition to its PDZs, SAP97 contains other protein interacting domains, such as the I3 sequence in the SRC homology-3 (SH3) domain, which binds to AKAP79. Deletion of I3 from SAP97 (ΔI3-SAP97) did not affect the binding of SAP97 to the ß(1)-AR. However, ΔI3-SAP97 could not rescue the recycling of the ß(1)-AR because it failed to incorporate AKAP79/PKA into the SAP97-ß(1)-AR complex. Therefore, bipartite binding of SAP97 to the ß(1)-AR and to AKAP79 is necessary for SAP97-mediated effects on recycling, externalization and functional resensitization of the ß(1)-AR. These data establish a prominent role for PDZ2 and I3 domains of SAP97 in organizing the ß(1)-adrenergic receptosome involved in connecting the ß(1)-AR to trafficking and signaling networks
    corecore