12 research outputs found

    DAF-16 and Δ9 Desaturase Genes Promote Cold Tolerance in Long-Lived Caenorhabditis elegans age-1 Mutants

    Get PDF
    In Caenorhabditis elegans, mutants of the conserved insulin/IGF-1 signalling (IIS) pathway are long-lived and stress resistant due to the altered expression of DAF-16 target genes such as those involved in cellular defence and metabolism. The three Δ9 desaturase genes, fat-5, fat-6 and fat-7, are included amongst these DAF-16 targets, and it is well established that Δ9 desaturase enzymes play an important role in survival at low temperatures. However, no assessment of cold tolerance has previously been reported for IIS mutants. We demonstrate that long-lived age-1(hx546) mutants are remarkably resilient to low temperature stress relative to wild type worms, and that this is dependent upon daf-16. We also show that cold tolerance following direct transfer to low temperatures is increased in wild type worms during the facultative, daf-16 dependent, dauer stage. Although the cold tolerant phenotype of age-1(hx546) mutants is predominantly due to the Δ9 desaturase genes, additional transcriptional targets of DAF-16 are also involved. Surprisingly, survival of wild type adults following a rapid temperature decline is not dependent upon functional daf-16, and cellular distributions of a DAF-16::GFP fusion protein indicate that DAF-16 is not activated during low temperature stress. This suggests that cold-induced physiological defences are not specifically regulated by the IIS pathway and DAF-16, but expression of DAF-16 target genes in IIS mutants and dauers is sufficient to promote cross tolerance to low temperatures in addition to other forms of stress

    Solidago chilensis Meyen hydroalcoholic extract reduces JNK/I kappa B pathway activation and ameliorates insulin resistance in diet-induced obesity mice

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Hydroalcoholic extract of Solidago chilensis (Sc) is employed in popular medicine to treat inflammatory disease. The low-grade proinflammatory state and the activation of serine/threonine kinases in adipose tissue, like c-jun kinase (JNK) and IKK, and transcription factors, have an important role in obesity-associated insulin resistance. The aim of this study was to further investigate the effects of the Sc extract on glucose homeostasis in diet-induced obesity mice. Male Swiss mice were randomized to three groups: a control group (C) fed with standard laboratory chow; a group with an experimental high-fat diet (HFD); and a group fed with a high-fat (45% kcal from fat) diet + extract of Sc (via intraperitoneal, 3 mg/kg) (ScHFD). The dietary treatment lasted for eight weeks. Subsequently, the expression and phosphorylation of proteins of interest in the liver, hypothalamus and skeletal muscle were evaluated by Western blot analysis. Body weight, epididymal fat pad mass and liver triglycerides were higher in HFD than in control mice, but these parameters were reduced by intraperitoneal administration of the extracts (3 mg/kg) to the HFD group. AKT phosphorylation stimulated by insulin in the liver, hypothalamus and skeletal muscle was higher in ScHFD as compared with HFD mice. Additionally, liver expression of phosphoenolpyruvate carboxykinase (PEPCK) and fatty acid synthase were lower in ScHFD as compared with HFD mice. Nuclear factor kappa B, p-I kappa B and p-JNK levels were higher in HFD when compared with control mice, but they were lowered by treatment with extract (ScHFD). In addition, in db/db mice, Sc extract also improved liver AKT phosphorylation stimulated by insulin and reduced PEPCK expression. The data presented herein show that Sc improves AKT activation. This effect may be promoted by reduction of the proinflammatory pathway in the liver and hypothalamus. Therefore, systemic action of the Sc components may contribute to improve obesity-associated pathophysiology.2361011471155Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Inhibition of Hypothalamic Inflammation Reverses Diet-Induced Insulin Resistance in the Liver

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Defective liver gluconeogenesis is the main mechanism leading to fasting hyperglycemia in type 2 diabetes, and, in concert with steatosis, it is the hallmark of hepatic insulin resistance. Experimental obesity results, at least in part, from hypothalamic inflammation, which leads to leptin resistance and defective regulation of energy homeostasis. Pharmacological or genetic disruption of hypothalamic inflammation restores leptin sensitivity and reduces adiposity. Here, we evaluate the effect of a hypothalamic anti-inflammatory approach to regulating hepatic responsiveness to insulin. Obese rodents were treated by intracerebroventricular injections, with immunoneutralizing antibodies against Toll-like receptor (TLR) 4 or tumor necrosis factor (TNF)alpha, and insulin signal transduction, hepatic steatosis, and gluconeogenesis were evaluated. The inhibition of either TLR4 or TNF alpha reduced hypothalamic inflammation, which was accompanied by the reduction of hypothalamic resistance to leptin and improved insulin signal transduction in the liver. This was accompanied by reduced liver steatosis and reduced hepatic expression of markers of steatosis. Furthermore, the inhibition of hypothalamic inflammation restored defective liver glucose production. All these beneficial effects were abrogated by vagotomy. Thus, the inhibition of hypothalamic inflammation in obesity results in improved hepatic insulin signal transduction, leading to reduced steatosis and reduced gluconeogenesis. All these effects are mediated by parasympathetic signals delivered by the vagus nerve. Diabetes 61:1455-1462, 201261614551462Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    The intercalated disc: a mechanosensing signalling node in cardiomyopathy

    No full text

    Microdomain heterogeneity in 3D affects the mechanics of neonatal cardiac myocyte contraction

    No full text
    Cardiac muscle cells are known to adapt to their physical surroundings, optimizing intracellular organization and contractile function for a given culture environment. A previously developed in vitro model system has shown that the inclusion of discrete microscale domains (or microrods) in three dimensions (3D) can alter long-term growth responses of neonatal ventricular myocytes. The aim of this work was to understand how cellular contact with such a domain affects various mechanical changes involved in cardiac muscle cell remodeling. Myocytes were maintained in 3D gels over 5 days in the presence or absence of 100 – μm-long microrods, and the effect of this local heterogeneity on cell behavior was analyzed via several imaging techniques. Microrod abutment resulted in approximately twofold increases in the maximum displacement of spontaneously beating myocytes, as based on confocal microscopy scans of the gel xy-plane or the myocyte long axis. In addition, microrods caused significant increases in the proportion of aligned myofibrils (≤20° deviation from long axis) in fixed myocytes. Microrod-related differences in axial contraction could be abrogated by long-term interruption of certain signals of the RhoA-/Rho-associated kinase (ROCK) or protein kinase C (PKC) pathway. Furthermore, microrod-induced increases in myocyte size and protein content were prevented by ROCK inhibition. In all, the data suggest that microdomain heterogeneity in 3D appears to promote the development of axially aligned contractile machinery in muscle cells, an observation that may have relevance to a number of cardiac tissue engineering interventions

    Micromechanical regulation in cardiac myocytes and fibroblasts: implications for tissue remodeling

    No full text
    corecore