54 research outputs found
Light Variability Illuminates Niche-Partitioning among Marine Picocyanobacteria
Prochlorococcus and Synechococcus picocyanobacteria are dominant contributors to marine primary production over large areas of the ocean. Phytoplankton cells are entrained in the water column and are thus often exposed to rapid changes in irradiance within the upper mixed layer of the ocean. An upward fluctuation in irradiance can result in photosystem II photoinactivation exceeding counteracting repair rates through protein turnover, thereby leading to net photoinhibition of primary productivity, and potentially cell death. Here we show that the effective cross-section for photosystem II photoinactivation is conserved across the picocyanobacteria, but that their photosystem II repair capacity and protein-specific photosystem II light capture are negatively correlated and vary widely across the strains. The differences in repair rate correspond to the light and nutrient conditions that characterize the site of origin of the Prochlorococcus and Synechococcus isolates, and determine the upward fluctuation in irradiance they can tolerate, indicating that photoinhibition due to transient high-light exposure influences their distribution in the ocean
Using proteomic analysis to investigate uniconazole-induced phytohormone variation and starch accumulation in duckweed (Landoltia punctata)
Trajectories in quality of life of patients with a fracture of the distal radius or ankle using latent class analysis
Roles of Salicylic Acid-responsive Cis-acting Elements and W-boxes in Salicylic Acid Induction of VCH3 Promoter in Transgenic Tobaccos
Colorful microdiversity of Synechococcus strains (picocyanobacteria) isolated from the Baltic Sea
Synechococcus is a cosmopolitan genus of picocyanobacteria living in the photic zone of freshwater and marine ecosystems. Here, we describe the isolation of 46 closely related picocyanobacterial strains from the Baltic Sea. The isolates showed considerable variation in their cell size and pigmentation phenotypes, yielding a colorful variety of red, pink and blue-green strains. These pigmentation phenotypes could not be differentiated on the basis of their 16S rRNA-internal transcribed spacer (ITS) sequences. Thirty-nine strains, designated BSea, possessed 16S rRNA-ITS sequences almost identical with Synechococcus strain WH5701. Despite their similar 16S rRNA-ITS sequences, the BSea strains separated into several different clusters when comparing the phycocyanin (cpcBA) operon. This separation was largely consistent with the phycobiliprotein composition of the different BSea strains. The majority of phycocyanin (PC)-rich Bsea strains clustered with WH5701. Remarkably, the phycoerythrin (PE)-rich strains of BSea formed an as yet unidentified cluster within the cpcBA phylogeny, distantly related to other PE-rich groups. Detailed analysis of the cpcBA operon using neighbour-net analysis indicated that the PE-rich BSea strains are probably endemic for the Baltic Sea. Comparison of the phylogenies obtained by the 16S rRNA-ITS, the cpcBA, and the concatenated 16S rRNA-ITS and cpcBA operon sequences revealed possible events of horizontal gene transfer among different Synechococcus lineages. Our results show that microdiversity is important in Synechococcus populations and that it can reflect extensive diversification of different pigmentation phenotypes into different ecological niches.
Colorful microdiversity of Synechococcus strains (picocyanobacteria) isolated from the Baltic Sea
Colourful niches of phototrophic microorganisms shaped by vibrations of the water molecule
The photosynthetic pigments of phototrophic microorganisms cover different regions of the solar light spectrum. Utilization of the light spectrum can be interpreted in terms of classical niche theory, as the light spectrum offers opportunities for niche differentiation and allows coexistence of species absorbing different colors of light. However, which spectral niches are available for phototrophic microorganisms? Here, we show that the answer is hidden in the vibrations of the water molecule. Water molecules absorb light at specific wavebands that match the energy required for their stretching and bending vibrations. Although light absorption at these specific wavelengths appears only as subtle shoulders in the absorption spectrum of pure water, these subtle shoulders create large gaps in the underwater light spectrum due to the exponential nature of light attenuation. Model calculations show that the wavebands between these gaps define a series of distinct niches in the underwater light spectrum. Strikingly, these distinct spectral niches match the light absorption spectra of the major photosynthetic pigments. This suggests that vibrations of the water molecule have played
- …
