10 research outputs found

    Surgical management of pulmonary inflammatory pseudotumors: A single center experience

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pulmonary inflammatory pseudotumor (PIP) is a rare disease. It is still debated whether it represents an inflammatory lesion characterized by uncontrolled cell growth or a true neoplasm. PIP is characterized by a cellular polymorphism.</p> <p>Methods</p> <p>We retrospectively analyzed 8 patients with PIP treated by surgery between 2001 and 2009. Preoperative thoracic computed tomography (CT) scan was performed in all cases. All patients underwent preoperative bronchoscopy with washing and brushing and/or transbronchial biopsy and preoperative cytology examination</p> <p>Results</p> <p>There were 5 men and 3 women, aged between 38 and 69 years (mean of 58 years). 3 patients (37%) were asymptomatic. The others had symptoms characterized by chest pain, shortness of breath and persistent cough or hemoptysis. 5 patients had neutrophilic leucocytosis. CT scan demonstrated solitary nodules (maximum diameter <3 cm) in 5 patients (62%) and lung masses (maximum diameter >3 cm) in 3 patients (37%). In 2 patients there were signs of pleural infiltration. Distant lesions were excluded in all cases. A preoperative histology examination failed to reach a definitive diagnosis in all patients. At surgery, we performed two lobectomies, one segmentectomy and five wedge resections, these being performed with videothoracoscopy (VATS), except for one patient where open surgery was used. Complete tumor resection was obtained in all patients. According to the Matsubara classification, there were 2 cases of organizing pneumonia, 5 cases of fibrous histiocytoma and one case of lymphoplasmacytoma. All patients were discharged alive from hospital between 4 and 7 days after surgery. At follow-up CT scan performed annually (range 11 to 112 months) (mean 58 months), there were no residual lesions, neither local nor distant recurrences.</p> <p>Conclusions</p> <p>PIP is a rare disease. Many synonyms have been used for this disease, usually in relation to the most represented cell type. The true incidence is unclear. Preoperative diagnosis is difficult to reach, despite performing a bronchoscopy or a transparietal needle aspiration. Different classifications have been proposed for PIP. Either medical, radiation or surgical therapy has been used for PIP. Whenever possible, surgery should be considered the standard treatment. Complete surgical resection is advocated to prevent recurrence.</p

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Refined mapping of X-linked reticulate pigmentary disorder and sequencing of candidate genes

    No full text
    The original publication can be found at www.springerlink.comX-linked reticulate pigmentary disorder with systemic manifestations in males (PDR) is very rare. Affected males are characterized by cutaneous and visceral symptoms suggestive of abnormally regulated inflammation. A genetic linkage study of a large Canadian kindred previously mapped the PDR gene to a greater than 40 Mb interval of Xp22–p21. The aim of this study was to identify the causative gene for PDR. The Canadian pedigree was expanded and additional PDR families recruited. Genetic linkage was performed using newer microsatellite markers. Positional and functional candidate genes were screened by PCR and sequencing of coding exons in affected males. The location of the PDR gene was narrowed to a ∼4.9 Mb interval of Xp22.11–p21.3 between markers DXS1052 and DXS1061. All annotated coding exons within this interval were sequenced in one affected male from each of the three multiplex families as well as one singleton, but no causative mutation was identified. Sequencing of other X-linked genes outside of the linked interval also failed to identify the cause of PDR but revealed a novel nonsynonymous cSNP in the GRPR gene in the Maltese population. PDR is most likely due to a mutation within the linked interval not affecting currently annotated coding exons.Lane J. Jaeckle Santos, Chao Xing, Robert B. Barnes, Lesley C. Ades, Andre Megarbane, Christopher Vidal, Angela Xuereb, Patrick S. Tarpey, Raffaella Smith, Mahmoud Khazab, Cheryl Shoubridge, Michael Partington, Andrew Futreal, Michael R. Stratton, Jozef Gecz and Andrew R. Zin

    Diseases of excess bone formation

    No full text
    The skeleton is an organ system composed of several specific tissue types, including cartilage and bone. It provides support and protection for soft tissues and other organs of the body, allows for movement through coordinated activities with the neuromuscular system, and is essential for maintenance of calcium homeostasis

    Cell death in the skin

    No full text
    The skin is the largest organ of the body and protects the organism against external physical, chemical and biological insults, such as wounding, ultraviolet radiation and micro-organisms. The epidermis is the upper part of the skin that is continuously renewed. The keratinocytes are the major cell type in the epidermis and undergo a specialized form of programmed cell death, called cornification, which is different from classical apoptosis. In keep with this view, several lines of evidence indicate that NF-kB is an important factor providing protection against keratinocyte apoptosis in homeostatic and inflammatory conditions. In contrast, the hair follicle is an epidermal appendage that shows cyclic apoptosis-driven involution, as part of the normal hair cycle. The different cell death programs need to be well orchestrated to maintain skin homeostasis. One of the major environmental insults to the skin is UVB radiation, causing the occurrence of apoptotic sunburn cells. Deregulation of cell death mechanisms in the skin can lead to diseases such as cancer, necrolysis and graft-versus-host disease. Here we review the apoptotic and the anti-apoptotic mechanisms in skin homeostasis and disease

    Cell death in the skin

    No full text
    corecore