31 research outputs found

    Particulate Matter-Induced Lung Inflammation Increases Systemic Levels of PAI-1 and Activates Coagulation Through Distinct Mechanisms

    Get PDF
    Exposure of human populations to ambient particulate matter (PM) air pollution significantly contributes to the mortality attributable to ischemic cardiovascular events. We reported that mice treated with intratracheally instilled PM develop a prothrombotic state that requires the release of IL-6 by alveolar macrophages. We sought to determine whether exposure of mice to PM increases the levels of PAI-1, a major regulator of thrombolysis, via a similar or distinct mechanism. mice but was absent in mice treated with etanercept, a TNF-α inhibitor. Treatment with etanercept did not prevent the PM-induced tendency toward thrombus formation.Mice exposed to inhaled PM exhibited a TNF-α-dependent increase in PAI-1 and an IL-6-dependent activation of coagulation. These results suggest that multiple mechanisms link PM-induced lung inflammation with the development of a prothrombotic state

    Protective Effect of Curcumin on Pulmonary and Cardiovascular Effects Induced by Repeated Exposure to Diesel Exhaust Particles in Mice

    Get PDF
    Particulate air pollution has been associated with increased risk of cardiopulmonary diseases. However, the underlying mechanisms are not fully understood. We have previously demonstrated that single dose exposure to diesel exhaust particle (DEP) causes lung inflammation and peripheral thrombotic events. Here, we exposed mice with repeated doses of DEP (15µg/animal) every 2nd day for 6 days (a total of 4 exposures), and measured several cardiopulmonary endpoints 48 h after the end of the treatments. Moreover, the potential protective effect of curcumin (the yellow pigment isolated from turmeric) on DEP-induced cardiopulmonary toxicity was assessed. DEP exposure increased macrophage and neutrophil numbers, tumor necrosis factor α (TNF α) in the bronchoalveolar lavage (BAL) fluid, and enhanced airway resistance to methacoline measured invasively using Flexivent. DEP also significantly increased plasma C-reactive protein (CRP) and TNF α concentrations, systolic blood pressure (SBP) as well as the pial arteriolar thrombosis. It also significantly enhanced the plasma D-dimer and plasminogen activator inhibitor-1 (PAI-1). Pretreatment with curcumin by oral gavage (45 mg/kg) 1h before exposure to DEP significantly prevented the influx of inflammatory cells and the increase of TNF α in BAL, and the increased airway resistance caused by DEP. Likewise, curcumin prevented the increase of SBP, CRP, TNF α, D-dimer and PAI-1. The thrombosis was partially but significantly mitigated. In conclusion, repeated exposure to DEP induced lung and systemic inflammation characterized by TNFα release, increased SBP, and accelerated coagulation. Our findings indicate that curcumin is a potent anti-inflammatory agent that prevents the release of TNFα and protects against the pulmonary and cardiovascular effects of DEP

    The macrophage at the intersection of immunity and metabolism in obesity

    Get PDF
    Obesity is a worldwide pandemic representing one of the major challenges that societies face around the globe. Identifying the mechanisms involved in its development and propagation will help the development of preventative and therapeutic strategies that may help control its rising rates

    Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing.

    Get PDF
    Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage

    Influence of the sample collection method on salivary interleukin-6 levels in resting and post-exercise conditions

    No full text
    Previous studies demonstrated that no significant relationships exist between salivary and serum IL-6 in resting conditions and following exercise and that appropriate saliva collection procedures allow to avoid analytical drawbacks. This investigation aimed to: (a) compare the effects of two methods of saliva collection on IL-6 assay; (b) search for correlation between salivary and serum IL-6 in resting and post-exercise conditions; (c) evaluate the IL-6 response to isometric contractions. Seventeen sedentary subjects and fifteen athletes underwent one blood and two salivary draws: saliva was collected chewing on cotton salivettes and using a plastic straw (SA method and ST method, respectively). Afterwards, the athletes only completed a fatiguing isometric exercise of the knee extensors and blood and saliva were sampled after the exercise. In the entire group (n=32), ST method produced higher IL-6 levels than SA method and serum sampling. The exercise elicited significant responses of lactate, serum IL-6, salivary IL-6 (by ST method): salivary IL-6 values using the ST collection method were higher at each sampling point than with the SA method. The correlation analyses applied to both resting levels in the entire group and absolute changes above baseline in the athlete group showed that: (1) no significant relationships exist between serum and salivary IL-6 levels; (2) the greater the salivary IL-6 measurement, the higher the resultant inaccuracy of the SA method; (3) significant correlations exist between isometric force and mechanical fatigue during exercise and peaks of lactate and serum IL-6. These data provided demonstration of a cotton-interference effect for the results of salivary IL-6 assay and confirmed the lack of significant correlation between salivary and serum IL-6 in resting and post-exercise conditions
    corecore