57 research outputs found

    A Transplantable Phosphorylation Probe for Direct Assessment of G Protein-Coupled Receptor Activation

    Get PDF
    The newly developed multireceptor somatostatin analogs pasireotide (SOM230), octreotide and somatoprim (DG3173) have primarily been characterized according to their binding profiles. However, their ability to activate individual somatostatin receptor subtypes (sst) has not been directly assessed so far. Here, we transplanted the carboxyl-terminal phosphorylation motif of the sst2 receptor to other somatostatin receptors and assessed receptor activation using a set of three phosphosite-specific antibodies. Our comparative analysis revealed unexpected efficacy profiles for pasireotide, octreotide and somatoprim. Pasireotide was able to activate sst3 and sst5 receptors but was only a partial agonist at the sst2 receptor. Octreotide exhibited potent agonistic properties at the sst2 receptor but produced very little sst5 receptor activation. Like octreotide, somatoprim was a full agonist at the sst2 receptor. Unlike octreotide, somatoprim was also a potent agonist at the sst5 receptor. Together, we propose the application of a phosphorylation probe for direct assessment of G protein-coupled receptor activation and demonstrate its utility in the pharmacological characterization of novel somatostatin analogs

    Integrins as therapeutic targets: lessons and opportunities.

    Get PDF
    The integrins are a large family of cell adhesion molecules that are essential for the regulation of cell growth and function. The identification of key roles for integrins in a diverse range of diseases, including cancer, infection, thrombosis and autoimmune disorders, has revealed their substantial potential as therapeutic targets. However, so far, pharmacological inhibitors for only three integrins have received marketing approval. This article discusses the structure and function of integrins, their roles in disease and the chequered history of the approved integrin antagonists. Recent advances in the understanding of integrin function, ligand interaction and signalling pathways suggest novel strategies for inhibiting integrin function that could help harness their full potential as therapeutic targets

    Exploring new physics frontiers through numerical relativity

    Get PDF
    The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology

    Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity

    Full text link
    corecore