24 research outputs found

    Adaptation to HIF-1 deficiency by upregulation of the AMP/ATP ratio and phosphofructokinase activation in hepatomas

    Get PDF
    Background HIF-1 deficiency has marked effects on tumour glycolysis and growth. We therefore investigated the consequences of HIF-1 deficiency in mice, using the well established Hepa-1 wild-type (WT) and HIF-1β-deficient (c4) model. These mechanisms could be clinically relevant, since HIF-1 is now a therapeutic target. Methods Hepa-1 WT and c4 tumours grown in vivo were analysed by 18FDG-PET and 19FDG Magnetic Resonance Spectroscopy for glucose uptake; by HPLC for adenine nucleotides; by immunohistochemistry for GLUTs; by immunoblotting and by DIGE followed by tandem mass spectrometry for protein expression; and by classical enzymatic methods for enzyme activity. Results HIF-1β deficient Hepa-1 c4 tumours grew significantly more slowly than WT tumours, and (as expected) showed significantly lower expression of many glycolytic enzymes. However, HIF-1β deficiency caused no significant change in the rate of glucose uptake in c4 tumours compared to WT when assessed in vivo by measuring fluoro-deoxyglucose (FDG) uptake. Immunohistochemistry demonstrated less GLUT-1 in c4 tumours, whereas GLUT-2 (liver type) was similar to WT. Factors that might upregulate glucose uptake independently of HIF-1 (phospho-Akt, c-Myc) were shown to have either lower or similar expression in c4 compared to WT tumours. However the AMP/ATP ratio was 4.5 fold higher (p < 0.01) in c4 tumours, and phosphofructokinase-1 (PFK-1) activity, measured at prevailing cellular ATP and AMP concentrations, was up to two-fold higher in homogenates of the deficient c4 cells and tumours compared to WT (p < 0.001), suggesting that allosteric PFK activation could explain their normal level of glycolysis. Phospho AMP-Kinase was also higher in the c4 tumours. Conclusions Despite their defective HIF-1 and consequent down-regulation of glycolytic enzyme expression, Hepa-1 c4 tumours maintain glucose uptake and glycolysis because the resulting low [ATP] high [AMP] allosterically activate PFK-1. This mechanism of resistance would keep glycolysis functioning and also result in activation of AMP-Kinase and growth inhibition; it may have major implications for the therapeutic activity of HIF inhibitors in vivo. Interestingly, this control mechanism does not involve transcriptional control or proteomics, but rather the classical activation and inhibition mechanisms of glycolytic enzymes

    On the classification of non-equal rank affine conformal embeddings and applications

    No full text
    We complete the classification of conformal embeddings of a maximally reductive subalgebra k into a simple Lie algebra g at non-integrable non-critical levels k by dealing with the case when k has rank less than that of g. We describe some remarkable instances of decomposition of the vertex algebra Vk (g) as a module for the vertex subalgebra generated by k. We discuss decompositions of conformal embeddings and constructions of new affine Howe dual pairs at negative levels. In particular, we study an example of conformal embeddings A1 × A1 → C3 at level k = −1/2, and obtain explicit branching rules by applying certain q-series identity. In the analysis of conformal embedding A1 × D4 → C8 at level k = −1/2 we detect subsingular vectors which do not appear in the branching rules of the classical Howe dual pairs

    VEGF and VEGFR polymorphisms affect clinical outcome in advanced renal cell carcinoma patients receiving first-line sunitinib

    No full text
    Background: Currently, sunitinib represents one of the therapeutic strongholds for renal cell carcinoma, but the criteria for treatment selection are lacking. We assessed the role of vascular endothelial growth factor (VEGF) and VEGF receptor (VEGFR) polymorphisms in the prediction of the clinical outcome in metastatic renal cell carcinoma (mRCC) patients.Methods:A total of 84 tumour samples from mRCC patients receiving first-line sunitinib were tested for VEGF and VEGFR single-nucleotide polymorphisms (SNPs). The SNP results were correlated with progression-free survival (PFS) and overall survival (OS).Results:Median PFS was 8.22 months, although whereas median OS was 32.13 months. The VEGF A rs833061 resulted significant in PFS (17 vs 4 months; P<0.0001) and OS (38 vs 10 months; P<0.0001). The VEGF A rs699947 was significant for PFS (18 vs 4 months; P=0.0001) and OS (37 vs 16 months; P<0.0001). The VEGF A rs2010963 was significant in PFS (18 vs 8 vs 2 months; P=0.0001) and OS (31 vs 36 vs 9 months; P=0.0045). The VEGR3 rs6877011 was significant in PFS (12 vs 4 months; P=0.0075) and OS (36 vs 17 months; P=0.0001). At multivariate analysis, rs833061, rs2010963 and rs68877011 were significant in PFS, and rs833061 and rs68877011 were independent factors in OS.Conclusions:In our analysis, patients with TT polymorphism of rs833061, CC polymorphism of rs699947, CC polymorphism of rs2010963 and CG polymorphism of rs6877011 seem to have a worse PFS and OS when receiving first-line sunitinib. \uc2\ua9 2013 Cancer Research UK. All rights reserved
    corecore