28 research outputs found

    Valorisation of Biowastes for the Production of Green Materials Using Chemical Methods

    Get PDF
    With crude oil reserves dwindling, the hunt for a sustainable alternative feedstock for fuels and materials for our society continues to expand. The biorefinery concept has enjoyed both a surge in popularity and also vocal opposition to the idea of diverting food-grade land and crops for this purpose. The idea of using the inevitable wastes arising from biomass processing, particularly farming and food production, is, therefore, gaining more attention as the feedstock for the biorefinery. For the three main components of biomass—carbohydrates, lipids, and proteins—there are long-established processes for using some of these by-products. However, the recent advances in chemical technologies are expanding both the feedstocks available for processing and the products that be obtained. Herein, this review presents some of the more recent developments in processing these molecules for green materials, as well as case studies that bring these technologies and materials together into final products for applied usage

    Prospects of biodiesel from Jatropha in Malaysia

    No full text
    The increasing energy demands along with the expected depletion of fossil fuels have promoted to search for alternative fuels that can be obtained from renewable energy resources. Biodiesel as a renewable energy resource has drawn the attention of many researchers and scientists because its immense potential to be part of a sustainable energy mix in near future. This report attempts to compile the findings on current global and Malaysian energy scenario, potential of biodiesel as a renewable energy source, biodiesel policies and standards, practicability of Jatropha curcas as a biodiesel source in Malaysia as well as impact of biodiesel from Jatropha curcas. Final part of this report also describes the development of biodiesel market in Malaysia. The paper found that Jatropha curcas is one of the cheapest biodiesel feedstock and it possesses the amicable fuel properties with higher oil contents compared to others. Being non edible oil seed feedstocks it will not affect food price and spur the food versus fuel dispute. Jatropha can be substituted significantly for oil imports. Jatropha biodiesel has potential to reduce GHG emission than diesel fuel and it can be used in diesel engine with similar performance of diesel fuel. Jatropha curcas has an immense contribution to develop rural livelihoods too. Finally biodiesel production from Jatropha is eco-friendly and offers many social and economical benefits for Malaysia and can play an increasingly significant role to fulfill the energy demand in Malaysia.Associated Grant:The authors would like to acknowledge University of Malaya for financial support through High Impact Research Grant entitles: Clean Diesel Technology for Military and Civilian Transport Vehicles which Grant number is UM.C/HIR/MOHE/ENG/07

    Effects of biodiesel blends on lubricating oil degradation and piston assembly energy losses

    Full text link
    Fuel is considered a major influencing parameter for engine oil condition during extended engine operation. Its effects on engine oil performance is required to be investigated with the implementation of the worldwide biodiesel mandate in various countries. This research monitored the influence of biodiesel on the condition of engine lube oil by long duration testing on three fuels: DF as the baseline; 20% palm biodiesel and 80% DF (PB20); and 20% jatropha biodiesel and 80% DF (JB20). The tests were carried out on a single-cylinder CI engine. Sump oil samples were collected at regular intervals during 200-h tests, after which the rheological, tribological, and chemical properties of the samples were investigated. Results showed that the B20 fuels decreased the viscosity and increased the acidity of the engine oil. Piston ring-cylinder and piston skirt-cylinder tests, in which a high-stroke reciprocating test rig was used, showed a slight increase in friction and wear losses near the intervals of oil draining for the B20 fuels. Chemical analysis by Fourier transform infrared spectroscopy and ASTM standard testing showed a decrease in soot loading but an increase in the fuel residue, corrosiveness, and oxidation of the engine oil samples for B20 fuelled engine tests

    Effect of additive on performance of C.I. engine fuelled with bio diesel

    No full text
    Among the alternative fuels the Bio diesel is one the most common and familiar to all. It's biodegradable, environment friendly as well as suitable source, to meet the future energy crises. The main concern of this experimental analysis is to reach a tentative goal, how this fuel can be utilised with maximum effective way. To find this, an experiment data analysis of different parameter such as break power, break specific fuel consumption, emission characteristic(NOx, HC,CO. etc) and exhaust temperature, is done through bio diesel fuel and also compared with ordinary diesel which is also known as petro diesel. This investigation is carried out through eddy current dynamometer and load cell arrangement which is controlled by a computer in case of finding the break power and BSFC respectively. And the emission characteristics are observed using Bosch and Bacharach exhaust analyzers. And finally the result is compared with diesel engine which is run by ordinary diesel. The final result implied that the bio diesel with some additives (B20+1%) shows best performance and reduce the exhaust emission including NOx. Thus the decision may be taken, 20% blended bio diesel with 1% additive as a best alternative fuel considering all the view aspects and alternatives. © 2011 Published by Elsevier Ltd

    Effect of additive on performance of C.I. engine fuelled with bio diesel

    Get PDF
    Among the alternative fuels the Bio diesel is one the most common and familiar to all. It's biodegradable, environment friendly as well as suitable source, to meet the future energy crises. The main concern of this experimental analysis is to reach a tentative goal, how this fuel can be utilised with maximum effective way. To find this, an experiment data analysis of different parameter such as break power, break specific fuel consumption, emission characteristic(NOx, HC,CO. etc) and exhaust temperature, is done through bio diesel fuel and also compared with ordinary diesel which is also known as petro diesel. This investigation is carried out through eddy current dynamometer and load cell arrangement which is controlled by a computer in case of finding the break power and BSFC respectively. And the emission characteristics are observed using Bosch and Bacharach exhaust analyzers. And finally the result is compared with diesel engine which is run by ordinary diesel. The final result implied that the bio diesel with some additives (B20+1%) shows best performance and reduce the exhaust emission including NOx. Thus the decision may be taken, 20% blended bio diesel with 1% additive as a best alternative fuel considering all the view aspects and alternatives. © 2011 Published by Elsevier Ltd

    Application of blend fuels in a diesel engine

    No full text
    Experimental study has been carried out to analyze engine performance and emissions characteristics for diesel engine using different blend fuels without any engine modifications. A total of four fuel samples, such as DF (100% diesel fuel), JB5 (5% jatropha biodiesel and 95% DF), JB10 (10% JB and 90% DF) and J5W5 (5% JB, 5% waste cooking oil and 90% DF) respectively were used in this study. Engine performance test was carried out at 100% load keeping throttle 100% wide open with variable speeds of 1500 to 2400 rpm at an interval of 100 rpm. Whereas, emission tests were carried out at 2300 rpm at 100% and 80% throttle position. As results of investigations, the average torque reduction compared to DF for JB5, JB10 and J5W5 was found as 0.63%, 1.63% and 1.44% and average power reduction was found as 0.67%, 1.66% and 1.54% respectively. Average increase in bsfc compared to DF was observed as 0.54%, 1.0% JB10 and 1.14% for JB5, JB10 and J5W5 respectively. In case of engine exhaust gas emissions, compared to DF average reduction in HC for JB5, JB10 and J5W5 at 2300 rpm and 100% throttle position found as 8.96%, 11.25% and 12.50%, whereas, at 2300 and 80% throttle position, reduction was as 16.28%, 30.23% and 31.98% respectively. Average reduction in CO at 2300 rpm and 100% throttle position for JB5, JB10 and J5W5 was found as 17.26%, 25.92% and 26.87%, whereas, at 80% throttle position, reduction was observed as 20.70%, 33.24% and 35.57%. Similarly, the reduction in CO2 compared to DF for JB5, JB10 and J5W5 at 2300 rpm and 100% throttle position was as 12.10%, 20.51% and 24.91%, whereas, at 80% throttle position, reductions was observed as 5.98%, 10.38% and 18.49% respectively. However, some NOx emissions were increased for all blend fuels compared to DF. In case of noise emission, sound level for all blend fuels was reduced compared to DF. It can be concluded that JB5, JB10 and J5W5 can be used in diesel engines without any engine modifications However, W5B5 produced some better results when compared to JB10. © 2011 Published by Elsevier Ltd

    Prospects of biodiesel from Jatropha in Malaysia

    No full text
    The increasing energy demands along with the expected depletion of fossil fuels have promoted to search for alternative fuels that can be obtained from renewable energy resources. Biodiesel as a renewable energy resource has drawn the attention of many researchers and scientists because its immense potential to be part of a sustainable energy mix in near future. This report attempts to compile the findings on current global and Malaysian energy scenario, potential of biodiesel as a renewable energy source, biodiesel policies and standards, practicability of Jatropha curcas as a biodiesel source in Malaysia as well as impact of biodiesel from Jatropha curcas. Final part of this report also describes the development of biodiesel market in Malaysia. The paper found that Jatropha curcas is one of the cheapest biodiesel feedstock and it possesses the amicable fuel properties with higher oil contents compared to others. Being non edible oil seed feedstocks it will not affect food price and spur the food versus fuel dispute. Jatropha can be substituted significantly for oil imports. Jatropha biodiesel has potential to reduce GHG emission than diesel fuel and it can be used in diesel engine with similar performance of diesel fuel. Jatropha curcas has an immense contribution to develop rural livelihoods too. Finally biodiesel production from Jatropha is eco-friendly and offers many social and economical benefits for Malaysia and can play an increasingly significant role to fulfill the energy demand in Malaysia

    Effect of coconut biodiesel blended fuels on engine performance and emission characteristics

    No full text
    Alternative fuels have received much attention due to the depletion of world petroleum reserves and increased environmental concerns. Thus processed form of vegetable oil (Biodiesel) offers attractive alternative fuels to compression ignition engines. The present work investigates the engine performance parameters and emissions characteristics for direct injection diesel engine using coconut biodiesel blends without any engine modifications. A total of three fuel samples, such as DF (100% diesel fuel), CB5 (5% coconut biodiesel and 95% DF), and CB15 (15% CB and 85% DF) respectively are used. Engine performance test has been carried out at 100% load, keeping throttle 100% wide open with variable speeds of 1500 to 2400 rpm at an interval of 100 rpm. Whereas, engine emission tests have been carried out at 2200 rpm at 100% and 80% throttle position. As results of investigations, there has been a decrease in torque and brake power, while increase in specific fuel consumption has been observed for biodiesel blended fuels over the entire speed range compared to net diesel fuel. In case of engine exhaust gas emissions, lower HC, CO and, higher CO2 and NOx emissions have been found for biodiesel blended fuels compared to diesel fuel. Moreover, reduction in sound level for both biodiesel blended fuels has been observed when compared to diesel fuel. Therefore, it can be concluded that CB5 and CB15 can be used in diesel engines without any engine modifications and have beneficial effects both in terms of emission reductions and alternative petroleum diesel fuel. © 2013 The Authors. Published by Elsevier Ltd

    Effect of coconut biodiesel blended fuels on engine performance and emission characteristics

    No full text
    Alternative fuels have received much attention due to the depletion of world petroleum reserves and increased environmental concerns. Thus processed form of vegetable oil (Biodiesel) offers attractive alternative fuels to compression ignition engines. The present work investigates the engine performance parameters and emissions characteristics for direct injection diesel engine using coconut biodiesel blends without any engine modifications. A total of three fuel samples, such as DF (100% diesel fuel), CB5 (5% coconut biodiesel and 95% DF), and CB15 (15% CB and 85% DF) respectively are used. Engine performance test has been carried out at 100% load, keeping throttle 100% wide open with variable speeds of 1500 to 2400 rpm at an interval of 100 rpm. Whereas, engine emission tests have been carried out at 2200 rpm at 100% and 80% throttle position. As results of investigations, there has been a decrease in torque and brake power, while increase in specific fuel consumption has been observed for biodiesel blended fuels over the entire speed range compared to net diesel fuel. In case of engine exhaust gas emissions, lower HC, CO and, higher CO2 and NOx emissions have been found for biodiesel blended fuels compared to diesel fuel. Moreover, reduction in sound level for both biodiesel blended fuels has been observed when compared to diesel fuel. Therefore, it can be concluded that CB5 and CB15 can be used in diesel engines without any engine modifications and have beneficial effects both in terms of emission reductions and alternative petroleum diesel fuel. © 2013 The Authors. Published by Elsevier Ltd
    corecore