10 research outputs found

    A randomised trial of observational learning from 2D and 3D models in robotically assisted surgery

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.BACKGROUND: Advances in 3D technology mean that both robotic surgical devices and surgical simulators can now incorporate stereoscopic viewing capabilities. While depth information may benefit robotic surgical performance, it is unclear whether 3D viewing also aids skill acquisition when learning from observing others. As observational learning plays a major role in surgical skills training, this study aimed to evaluate whether 3D viewing provides learning benefits in a robotically assisted surgical task. METHODS: 90 medical students were assigned to either (1) 2D or (2) 3D observation of a consultant surgeon performing a training task on the daVinci S robotic system, or (3) a no observation control, in a randomised parallel design. Subsequent performance and instrument movement metrics were assessed immediately following observation and at one-week retention. RESULTS: Both 2D and 3D groups outperformed no observation controls following the observation intervention (ps < 0.05), but there was no difference between 2D and 3D groups at any of the timepoints. There was also no difference in movement parameters between groups. CONCLUSIONS: While 3D viewing systems may have beneficial effects for surgical performance, these results suggest that depth information has limited utility during observational learning of surgical skills in novices. The task constraints and end goals may provide more important information for learning than the relative motion of surgical instruments in 3D space.This research was supported by an Intuitive Surgical grant awarded to Dr G Buckingha

    Clinical electrophysiology of the optic nerve and retinal ganglion cells

    No full text

    The diversity and breadth of cancer cell fatty acid metabolism

    No full text
    corecore