10 research outputs found

    The Alpine Cushion Plant Silene acaulis as Foundation Species: A Bug’s-Eye View to Facilitation and Microclimate

    Get PDF
    Alpine ecosystems are important globally with high levels of endemic and rare species. Given that they will be highly impacted by climate change, understanding biotic factors that maintain diversity is critical. Silene acaulis is a common alpine nurse plant shown to positively influence the diversity and abundance of organisms–predominantly other plant species. The hypothesis that cushion or nurse plants in general are important to multiple trophic levels has been proposed but rarely tested. Alpine arthropod diversity is also largely understudied worldwide, and the plant-arthropod interactions reported are mostly negative, that is,. herbivory. Plant and arthropod diversity and abundance were sampled on S. acaulis and at paired adjacent microsites with other non-cushion forming vegetation present on Whistler Mountain, B.C., Canada to examine the relative trophic effects of cushion plants. Plant species richness and abundance but not Simpson’s diversity index was higher on cushion microsites relative to other vegetation. Arthropod richness, abundance, and diversity were all higher on cushion microsites relative to other vegetated sites. On a microclimatic scale, S. acaulis ameliorated stressful conditions for plants and invertebrates living inside it, but the highest levels of arthropod diversity were observed on cushions with tall plant growth. Hence, alpine cushion plants can be foundation species not only for other plant species but other trophic levels, and these impacts are expressed through both direct and indirect effects associated with altered environmental conditions and localized productivity. Whilst this case study tests a limited subset of the membership of alpine animal communities, it clearly demonstrates that cushion-forming plant species are an important consideration in understanding resilience to global changes for many organisms in addition to other plants

    Suppression of parathyroid hormone and bone resorption by calcium carbonate and calcium citrate in postmenopausal women

    No full text
    The original publication can be found at www.springerlink.comThis study was conducted to compare the suppressive effects of calcium carbonate and calcium citrate on bone resorption in early postmenopause. Calcium citrate is thought to be better absorbed. We therefore tested the hypothesis that calcium as citrate is more effective than calcium as carbonate in suppressing parathyroid hormone (PTH) and C-terminal telopeptide. Twenty-five healthy postmenopausal women were recruited in this double blind crossover study. The subjects were randomly allocated to receive either 1,000 mg of elemental calcium as carbonate or 500 mg of calcium as citrate. They were given the alternate calcium dose 1 week later. Serum measurements of total and ionized calcium, phosphate, PTH, and CrossLaps were repeated 12 hours after each dose. Analysis of variance found no significant difference between measures for the two salts. Tests for equivalence indicated that 500 mg of calcium citrate may be superior to 1,000 mg of calcium carbonate in raising serum total and ionized calcium (P = 0.04 and 0.05, respectively). For all parameters measured, 500 mg of calcium citrate was at least as beneficial as 1,000 mg of calcium carbonate. Calcium citrate is at least as effective as calcium carbonate in suppressing PTH and C-terminal telopeptide cross-links, at half the dose. This may be because calcium as citrate is better absorbed than calcium as carbonate. If calcium citrate can be used in lower doses, it may be better tolerated than calcium carbonate.Sunethra D. C. Thomas, Allan G. Need, Graeme Tucker, Peter Slobodian, Peter D. O’Loughlin and B. E. Christopher Nordi

    Value Creation and Capture With Transgenic Plants

    No full text

    References

    No full text

    Die Mischkontakte

    No full text

    Drinking Water: Factors Affecting the Quality of Drinking Water

    No full text
    corecore