18 research outputs found
Three-dimensional comparison of intramuscular fat content between young and old adults
3D strength surfaces for ankle plantar- and dorsi-flexion in healthy adults: an isometric and isokinetic dynamometry study
Allometric scaling of strength measurements to body size
For comparative purposes, normalisation of strength measures to body size using allometric scaling is recommended. A wide range of scaling exponents have been suggested, typically utilising body mass, although a comprehensive evaluation of different body size variables has not been documented. Differences between force (F) and torque (T) measurements of strength, and the velocity of measurement might also explain some of the variability in the scaling exponents proposed. Knee extensor strength of 86 young men was assessed with measurement of torque at four velocities (0-4.19 rad s(-1)) and force measured isometrically. Body size variables included body mass, height and fat-free mass. Scaling exponents for torque were consistently higher than for force, but the velocity of torque measurement had no influence. As the confounding effects of fat mass were restricted, scaling exponents and the strength of the power-function relationships progressively increased. Fat-free mass determined a surprisingly high proportion of the variance in measured strength (F, 31%; T, 52-58%). Absolute force and torque measurements, and even torque normalised for body mass, were significantly influenced by height, although strength measures normalised to fat-free mass were not. To normalise strength measurements to body mass, for relatively homogenous lean populations (body fat 20%) lower body mass exponents appear more suitable (F, 0.45; T, 0.68). Nevertheless, fat-free mass is the recommended index for scaling strength to body size, and higher exponents (F, 0.76; T, 1.12) are advocated in this case
Segmentation of fascias, fat and muscle from magnetic resonance images in humans: the DISPIMAG software
Reliability of Inversion and Eversion Peak- and Average-Torque Measurements from the Biodex System 3 Dynamometer
Isokinetic Strength Testing Following Intramedullary Nailing of Tibial Shaft Fractures Predicts Time to Recovery and Return of Muscle Strength in the Injured Extremity: A Prospective Case Series
Reliability of Maximal Voluntary Isometric Contraction of Ankle Dorsiflexion in Male Subjects
Eating quickly is associated with waist-to-height ratio among Japanese adolescents: a cross-sectional survey
Bradykinin type 2 receptor -9/-9 genotype is associated with triceps brachii muscle hypertrophy following strength training in young healthy men
<p>Abstract</p> <p>Background</p> <p>Bradykinin type 2 receptor (<it>B2BRK)</it> genotype was reported to be associated with changes in the left-ventricular mass as a response to aerobic training, as well as in the regulation of the skeletal muscle performance in both athletes and non-athletes. However, there are no reports on the effect of <it>B2BRK</it> 9-bp polymorphism on the response of the skeletal muscle to strength training, and our aim was to determine the relationship between the <it>B2BRK</it> SNP and triceps brachii functional and morphological adaptation to programmed physical activity in young adults.</p> <p>Methods</p> <p>In this 6-week pretest-posttest exercise intervention study, twenty nine healthy young men (21.5 ± 2.7 y, BMI 24.2 ± 3.5 kg/m<sup>2</sup>) were put on a 6-week exercise protocol using an isoacceleration dynamometer (5 times a week, 5 daily sets with 10 maximal elbow extensions, 1 minute rest between sets). Triceps brachii muscle volumes were assessed by using magnetic resonance imaging before and after the strength training. Bradykinin type 2 receptor 9 base pair polymorphism was determined for all participants.</p> <p>Results</p> <p>Following the elbow extensors training, an average increase in the volume of both triceps brachii was 5.4 ± 3.4% (from 929.5 ± 146.8 cm<sup>3</sup> pre-training to 977.6 ± 140.9 cm<sup>3</sup> after training, p<0.001). Triceps brachii volume increase was significantly larger in individuals homozygous for −<it>9</it> allele compared to individuals with one or two +<it>9</it> alleles (−<it>9</it>/-<it>9</it>, 8.5 ± 3.8%; vs. -<it>9</it>/+<it>9</it> and +<it>9</it>/+<it>9</it> combined, 4.7 ± 4.5%, p < 0.05). Mean increases in endurance strength in response to training were 48.4 ± 20.2%, but the increases were not dependent on <it>B2BRK</it> genotype (−<it>9</it>/-<it>9</it>, 50.2 ± 19.2%; vs. -<it>9</it>/+<it>9</it> and +<it>9</it>/+<it>9</it> combined, 46.8 ± 20.7%, p > 0.05).</p> <p>Conclusions</p> <p>We found that muscle morphological response to targeted training – hypertrophy – is related to polymorphisms of <it>B2BRK</it>. However, no significant influence of different <it>B2BRK</it> genotypes on functional muscle properties after strength training in young healthy non athletes was found. This finding could be relevant, not only in predicting individual muscle adaptation capacity to training or sarcopenia related to aging and inactivity, but also in determining new therapeutic strategies targeting genetic control of muscle function, especially for neuromuscular disorders that are characterized by progressive adverse changes in muscle quality, mass, strength and force production (e.g., muscular dystrophy, multiple sclerosis, Parkinson’s disease).</p
In vivo specific tension of the human quadriceps femoris muscle.
It is not known to what extent the inter-individual variation in human muscle strength is explicable by differences in specific tension. To investigate this, a comprehensive approach was used to determine in vivo specific tension of the quadriceps femoris (QF) muscle (Method 1). Since this is a protracted technique, a simpler procedure was also developed to accurately estimate QF specific tension (Method 2). Method 1 comprised calculating patellar tendon force (F (t)) in 27 young, untrained males, by correcting maximum voluntary contraction (MVC) for antagonist co-activation, voluntary activation and moment arm length. For each component muscle, the physiological cross-sectional area (PCSA) was calculated as volume divided by fascicle length during MVC. Dividing F (t) by the sum of the four PCSAs (each multiplied by the cosine of its pennation angle during MVC) provided QF specific tension. Method 2 was a simplification of Method 1, where QF specific tension was estimated from a single anatomical CSA and vastus lateralis muscle geometry. Using Method 1, the variability in MVC (18%) and specific tension (16%) was similar. Specific tension from Method 1 (30 +/- 5 N cm(-2)) was similar to and correlated with that of Method 2 (29 +/- 5 N cm(-2); R (2) = 0.67; P < 0.05). In conclusion, most of the inter-individual variability in MVC torque remains largely unexplained. Furthermore, a simple method of estimating QF specific tension provided similar values to the comprehensive approach, thereby enabling accurate estimations of QF specific tension where time and resources are limited
