26 research outputs found

    Modes of Aβ toxicity in Alzheimer’s disease

    Get PDF
    Alzheimer’s disease (AD) is reaching epidemic proportions, yet a cure is not yet available. While the genetic causes of the rare familial inherited forms of AD are understood, the causes of the sporadic forms of the disease are not. Histopathologically, these two forms of AD are indistinguishable: they are characterized by amyloid-β (Aβ) peptide-containing amyloid plaques and tau-containing neurofibrillary tangles. In this review we compare AD to frontotemporal dementia (FTD), a subset of which is characterized by tau deposition in the absence of overt plaques. A host of transgenic animal AD models have been established through the expression of human proteins with pathogenic mutations previously identified in familial AD and FTD. Determining how these mutant proteins cause disease in vivo should contribute to an understanding of the causes of the more frequent sporadic forms. We discuss the insight transgenic animal models have provided into Aβ and tau toxicity, also with regards to mitochondrial function and the crucial role tau plays in mediating Aβ toxicity. We also discuss the role of miRNAs in mediating the toxic effects of the Aβ peptide

    The Effects of Adenoviral Transfection of the Keratinocyte Growth Factor Gene on Epidermal Stem Cells: An \u3cem\u3eIn Vitro\u3c/em\u3e Study

    No full text
    Epidermal stem cells (ESCs) are characterized as slowcycling, multi-potent, and self-renewing cells that not only maintain somatic homeostasis but also participate in tissue regeneration and repair. To examine the feasibility of adenoviral vector-mediated keratinocyte growth factor (KGF) gene transfer into in vitro-expanded ESCs, ESCs were isolated from samples of human skin, cultured in vitro, and then transfected with recombinant adenovirus (Ad) carrying the human KGF gene (AdKGF) or green fluorescent protein gene (AdGFP). The effects of KGF gene transfer on cell proliferation, cell cycle arrest, cell surface antigen phenotype, and β-catenin expression were investigated. Compared to ESCs transfected with AdGFP, AdKGFtransfected ESCs grew well, maintained a high proliferative capacity in keratinocyte serum-free medium, and expressed high levels of β-catenin. AdKGF infection increased the number of ESCs in the G0/G1 phase and promoted ESCs entry into the G2/M phase, but had no effect on cell surface antigen phenotype (CD49f+/CD71−). The results suggest that KGF gene transfer can stimulate ESCs to grow and undergo cell division, which can be applied to enhance cutaneous wound healing
    corecore