27 research outputs found

    The voltage-dependent anion channel is the target for a new class of inhibitors of the permeability transition pore

    No full text
    The relevance of the mitochondrial permeability transition pore (PTP) in Ca2+ homeostasis and cell death has gained wide attention. Yet, despite detailed functional characterization, the structure of this channel remains elusive. Here we report on a new class of inhibitors of the PTP and on the identification of their molecular target. The most potent among the compounds prepared, Ro 68-3400, inhibited PTP with a potency comparable to that of cyclosporin A. Since Ro 68-3400 has a reactive moiety capable of covalent modification of proteins, [3H]Ro 68-3400 was used as an affinity label for the identification of its protein target. In intact mitochondria isolated from rodent brain and liver and in SH-SY5Y human neuroblastoma cells, [3H]Ro 68-3400 predominantly labeled a protein of about 32 kDa. This protein was identified as the isoform 1 of the voltage-dependent anion channel (VDAC). Both functional and affinity labeling experiments indicated that VDAC might correspond to the site for the PTP inhibitor ubiquinone0, whereas other known PTP modulators acted at distinct sites. While Ro 68-3400 represents a new useful tool for the study of the structure and function of VDAC and the PTP, the results obtained provide direct evidence that VDAC1 is a component of this mitochondrial pore

    The mitochondrial effects of small organic ligands of BCL-2. Sensitization of BCL-2-overexpressing cells to apoptosis by a pyrimidine-2,4,6-trione derivative

    No full text
    We have investigated the mitochondrial effects of BH3I-2, Chelerythrine, and HA14-1, small organic molecules that share the ability to bind the BH3 domain of BCL-2. All compounds displayed a biphasic effect on mitochondrial respiration with uncoupling at low concentrations and respiratory inhibition at higher concentrations, the relative uncoupling potency being BH3I-2 (half-maximal uncoupling at about 80 nM) > Chelerythrine (half-maximal uncoupling at about 2 M) > HA14-1 (half-maximal uncoupling at about 20 M). At concentrations lower than required for uncoupling all compounds sensitized the permeability transition pore (PTP) to opening both in isolated mitochondria and intact cells. To assess whether the effects on BCL-2 binding, PTP induction and respiration could be due to different structural determinants we have tested a set of HA14-1 analogs from the Hoffmann-La Roche chemical library. We have identified 5-(6-chloro-2,4-dioxo-1,3,4,10-tetrahydro- 2H-9-oxa-1,3-diaza-anthracen-10-yl)-pyrimidine-2,4,6- trione (EM20-25) as amolecule devoid of effects on respiration that is able to induce PTP opening, to disrupt the BCL-2/BAX interactions in situ and to activate caspase-9 in BCL-2-overexpressing cells. EM20-25 neutralized the antiapoptotic activity of overexpressed BCL-2 toward staurosporine and sensitized BCL-2 expressing cells from leukemic patients to the killing effects of staurosporine, chlorambucil, and fludarabine. These results provide a proof of principle that the potentially toxic effects of BCL-2 ligands on mitochondrial respiration are not essential for their antiapoptotic activity and represent an important step forward in the development of tumor-selective drugs acting on BCL-2

    The mitochondrial effects of small organic ligands of BCL-2 - Sensitization of BCL-2-overexpressing cells to apoptosis by a pyrimidine-2,4,6-trione derivative

    No full text
    We have investigated the mitochondrial effects of BH3I-2, Chelerythrine, and HA14-1, small organic molecules that share the ability to bind the BH3 domain of BCL-2. All compounds displayed a biphasic effect on mitochondrial respiration with uncoupling at low concentrations and respiratory inhibition at higher concentrations, the relative uncoupling potency being BH3I-2 (half-maximal uncoupling at about 80 nM) > Chelerythrine (half-maximal uncoupling at about 2 M) > HA14-1 (half-maximal uncoupling at about 20 M). At concentrations lower than required for uncoupling all compounds sensitized the permeability transition pore (PTP) to opening both in isolated mitochondria and intact cells. To assess whether the effects on BCL-2 binding, PTP induction and respiration could be due to different structural determinants we have tested a set of HA14-1 analogs from the Hoffmann-La Roche chemical library. We have identified 5-(6-chloro-2,4-dioxo-1,3,4,10-tetrahydro- 2H-9-oxa-1,3-diaza-anthracen-10-yl)-pyrimidine-2,4,6- trione (EM20-25) as amolecule devoid of effects on respiration that is able to induce PTP opening, to disrupt the BCL-2/BAX interactions in situ and to activate caspase-9 in BCL-2-overexpressing cells. EM20-25 neutralized the antiapoptotic activity of overexpressed BCL-2 toward staurosporine and sensitized BCL-2 expressing cells from leukemic patients to the killing effects of staurosporine, chlorambucil, and fludarabine. These results provide a proof of principle that the potentially toxic effects of BCL-2 ligands on mitochondrial respiration are not essential for their antiapoptotic activity and represent an important step forward in the development of tumor-selective drugs acting on BCL-2
    corecore