104 research outputs found

    Ptch2/Gas1 and Ptch1/Boc differentially regulate Hedgehog signalling in murine primordial germ cell migration.

    Get PDF
    Gas1 and Boc/Cdon act as co-receptors in the vertebrate Hedgehog signalling pathway, but the nature of their interaction with the primary Ptch1/2 receptors remains unclear. Here we demonstrate, using primordial germ cell migration in mouse as a developmental model, that specific hetero-complexes of Ptch2/Gas1 and Ptch1/Boc mediate the process of Smo de-repression with different kinetics, through distinct modes of Hedgehog ligand reception. Moreover, Ptch2-mediated Hedgehog signalling induces the phosphorylation of Creb and Src proteins in parallel to Gli induction, identifying a previously unknown Ptch2-specific signal pathway. We propose that although Ptch1 and Ptch2 functionally overlap in the sequestration of Smo, the spatiotemporal expression of Boc and Gas1 may determine the outcome of Hedgehog signalling through compartmentalisation and modulation of Smo-downstream signalling. Our study identifies the existence of a divergent Hedgehog signal pathway mediated by Ptch2 and provides a mechanism for differential interpretation of Hedgehog signalling in the germ cell niche

    Internationalisation speed and MNE performance: A study of the market-seeking expansion of retail MNEs

    Get PDF
    Existing research is divided on whether firms that rapidly expand their overseas operations perform better than firms that internationalize slowly. Drawing on Penrose’s theory of the growth of the firm we argue that the positive effects of rapid internationalization give way to negative effects with increasing internationalization speed, leading to an inverted U-shaped association between internationalization speed and firm performance. We analyse the market-seeking expansion of 110 retailers over a 10-year period (2003–2012) and find support for a curvilinear relationship between internationalization speed and firm performance that is moderated by the geographic scope of firms’ internationalization path and firms’ international experience. Our study contributes to resolving conflicting views on the link between internationalization speed and firm performance

    Clinical Manifestations and Case Management of Ebola Haemorrhagic Fever caused by a newly identified virus strain, Bundibugyo, Uganda, 2007-2008

    Get PDF
    A confirmed Ebola haemorrhagic fever (EHF) outbreak in Bundibugyo, Uganda, November 2007-February 2008, was caused by a putative new species (Bundibugyo ebolavirus). It included 93 putative cases, 56 laboratory-confirmed cases, and 37 deaths (CFR = 25%). Study objectives are to describe clinical manifestations and case management for 26 hospitalised laboratory-confirmed EHF patients. Clinical findings are congruous with previously reported EHF infections. The most frequently experienced symptoms were non-bloody diarrhoea (81%), severe headache (81%), and asthenia (77%). Seven patients reported or were observed with haemorrhagic symptoms, six of whom died. Ebola care remains difficult due to the resource-poor setting of outbreaks and the infection-control procedures required. However, quality data collection is essential to evaluate case definitions and therapeutic interventions, and needs improvement in future epidemics. Organizations usually involved in EHF case management have a particular responsibility in this respect

    Inhibition of Aldose Reductase Prevents Experimental Allergic Airway Inflammation in Mice

    Get PDF
    The bronchial asthma, a clinical complication of persistent inflammation of the airway and subsequent airway hyper-responsiveness, is a leading cause of morbidity and mortality in critically ill patients. Several studies have shown that oxidative stress plays a key role in initiation as well as amplification of inflammation in airways. However, still there are no good anti-oxidant strategies available for therapeutic intervention in asthma pathogenesis. Most recent studies suggest that polyol pathway enzyme, aldose reductase (AR), contributes to the pathogenesis of oxidative stress-induced inflammation by affecting the NF-kappaB-dependent expression of cytokines and chemokines and therefore inhibitors of AR could be anti-inflammatory. Since inhibitors of AR have already gone through phase-III clinical studies for diabetic complications and found to be safe, our hypothesis is that AR inhibitors could be novel therapeutic drugs for the prevention and treatment of asthma. Hence, we investigated the efficacy of AR inhibition in the prevention of allergic responses to a common natural airborne allergen, ragweed pollen that leads to airway inflammation and hyper-responsiveness in a murine model of asthma.Primary Human Small Airway Epithelial Cells (SAEC) were used to investigate the in vitro effects of AR inhibition on ragweed pollen extract (RWE)-induced cytotoxic and inflammatory signals. Our results indicate that inhibition of AR prevents RWE -induced apoptotic cell death as measured by annexin-v staining, increase in the activation of NF-kappaB and expression of inflammatory markers such as inducible nitric oxide synthase (iNOS), cycloxygenase (COX)-2, Prostaglandin (PG) E(2), IL-6 and IL-8. Further, BALB/c mice were sensitized with endotoxin-free RWE in the absence and presence of AR inhibitor and followed by evaluation of perivascular and peribronchial inflammation, mucin production, eosinophils infiltration and airway hyperresponsiveness. Our results indicate that inhibition of AR prevents airway inflammation and production of inflammatory cytokines, accumulation of eosinophils in airways and sub-epithelial regions, mucin production in the bronchoalveolar lavage fluid and airway hyperresponsiveness in mice.These results suggest that airway inflammation due to allergic response to RWE, which subsequently activates oxidative stress-induced expression of inflammatory cytokines via NF-kappaB-dependent mechanism, could be prevented by AR inhibitors. Therefore, inhibition of AR could have clinical implications, especially for the treatment of airway inflammation, a major cause of asthma pathogenesis

    N-3 PUFA Supplementation Triggers PPAR-α Activation and PPAR-α/NF-κB Interaction: Anti-Inflammatory Implications in Liver Ischemia-Reperfusion Injury

    Get PDF
    Dietary supplementation with the n-3 polyunsaturated fatty acids (n-3 PUFA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) to rats preconditions the liver against ischemia-reperfusion (IR) injury, with reduction of the enhanced nuclear factor-κB (NF-κB) functionality occurring in the early phase of IR injury, and recovery of IR-induced pro-inflammatory cytokine response. The aim of the present study was to test the hypothesis that liver preconditioning by n-3 PUFA is exerted through peroxisone proliferator-activated receptor α (PPAR-α) activation and interference with NF-κB activation. For this purpose we evaluated the formation of PPAR-α/NF-κBp65 complexes in relation to changes in PPAR-α activation, IκB-α phosphorylation and serum levels and expression of interleukin (IL)-1β and tumor necrosis factor (TNF)-α in a model of hepatic IR-injury (1 h of ischemia and 20 h of reperfusion) or sham laparotomy (controls) in male Sprague Dawley rats. Animals were previously supplemented for 7 days with encapsulated fish oil (General Nutrition Corp., Pittsburg, PA) or isovolumetric amounts of saline (controls). Normalization of IR-altered parameters of liver injury (serum transaminases and liver morphology) was achieved by dietary n-3 PUFA supplementation. EPA and DHA suppression of the early IR-induced NF-κB activation was paralleled by generation of PPAR-α/NF-κBp65 complexes, in concomitance with normalization of the IR-induced IκB-α phosphorylation. PPAR-α activation by n-3 PUFA was evidenced by enhancement in the expression of the PPAR-α-regulated Acyl-CoA oxidase (Acox) and Carnitine-Palmitoyl-CoA transferase I (CPT-I) genes. Consistent with these findings, normalization of IR-induced expression and serum levels of NF-κB-controlled cytokines IL-lβ and TNF-α was observed at 20 h of reperfusion. Taken together, these findings point to an antagonistic effect of PPAR-α on NF-κB-controlled transcription of pro-inflammatory mediators. This effect is associated with the formation of PPAR-α/NF-κBp65 complexes and enhanced cytosolic IκB-α stability, as major preconditioning mechanisms induced by n-3 PUFA supplementation against IR liver injury

    Vertical Heterophoria and Postural Control in Nonspecific Chronic Low Back Pain

    Get PDF
    The purpose of this study was to test postural control during quiet standing in nonspecific chronic low back pain (LBP) subjects with vertical heterophoria (VH) before and after cancellation of VH; also to compare with healthy subjects with, and without VH. Fourteen subjects with LBP took part in this study. The postural performance was measured through the center of pressure displacements with a force platform while the subjects fixated on a target placed at either 40 or 200 cm, before and after VH cancellation with an appropriate prism. Their postural performance was compared to that of 14 healthy subjects with VH and 12 without VH (i.e. vertical orthophoria) studied previously in similar conditions. For LBP subjects, cancellation of VH with a prism improved postural performance. With respect to control subjects (with or without VH), the variance of speed of the center of pressure was higher, suggesting more energy was needed to stabilize their posture in quiet upright stance. Similarly to controls, LBP subjects showed higher postural sway when they were looking at a target at a far distance than at a close distance. The most important finding is that LBP subjects with VH can improve their performance after prism-cancellation of their VH. We suggest that VH reflects mild conflict between sensory and motor inputs involved in postural control i.e. a non optimal integration of the various signals. This could affect the performance of postural control and perhaps lead to pain. Nonspecific chronic back pain may results from such prolonged conflict

    Nitrosative and Oxidative Stresses Contribute to Post-Ischemic Liver Injury Following Severe Hemorrhagic Shock: The Role of Hypoxemic Resuscitation

    Get PDF
    Purpose: Hemorrhagic shock and resuscitation is frequently associated with liver ischemia-reperfusion injury. The aim of the study was to investigate whether hypoxemic resuscitation attenuates liver injury. Methods: Anesthetized, mechanically ventilated New Zealand white rabbits were exsanguinated to a mean arterial pressure of 30 mmHg for 60 minutes. Resuscitation under normoxemia (Normox-Res group, n = 16, PaO2 = 95–105 mmHg) or hypoxemia (Hypox-Res group, n = 15, PaO 2 = 35–40 mmHg) followed, modifying the FiO 2. Animals not subjected to shock constituted the sham group (n = 11, PaO 2 = 95–105 mmHg). Indices of the inflammatory, oxidative and nitrosative response were measured and histopathological and immunohistochemical studies of the liver were performed. Results: Normox-Res group animals exhibited increased serum alanine aminotransferase, tumor necrosis factor- alpha, interleukin (IL)-1b and IL-6 levels compared with Hypox-Res and sham groups. Reactive oxygen species generation, malondialdehyde formation and myeloperoxidase activity were all elevated in Normox-Res rabbits compared with Hypox-Res and sham groups. Similarly, endothelial NO synthase and inducible NO synthase mRNA expression was up-regulated and nitrotyrosine immunostaining increased in animals resuscitated normoxemically, indicating a more intense nitrosative stress. Hypox-Res animals demonstrated a less prominent histopathologic injury which was similar to sham animals. Conclusions: Hypoxemic resuscitation prevents liver reperfusion injury through attenuation of the inflammatory respons

    Controversy surrounding the increased expression of TGFβ1 in asthma

    Get PDF
    Asthma is a waxing and waning disease that leads to structural changes in the airways, such as subepithelial fibrosis, increased mass of airway smooth muscle and epithelial metaplasia. Such a remodeling of the airways futher amplifies asthma symptoms, but its etiology is unknown. Transforming growth factor β1 is a pleiotropic cytokine involved in many fibrotic, oncologic and immunologic diseases and is believed to play an essential role in airway remodeling that occurs in asthmatic patients. Since it is secreted in an inactive form, the overall activity of this cytokine is not exclusively determined by its level of expression, but also by extensive and complex post-translational mechanisms, which are all importanin modulating the magnitude of the TGFβ1 response. Even if TGFβ1 upregulation in asthma is considered as a dogma by certain investigators in the field, the overall picture of the published litterature is not that clear and the cellular origin of this cytokine in the airways of asthmatics is still a contemporaneous debate. On the other hand, it is becoming clear that TGFβ1 signaling is increased in the lungs of asthmatics, which testifies the increased activity of this cytokine in asthma pathogenesis. The current work is an impartial and exhaustive compilation of the reported papers regarding the expression of TGFβ1 in human asthmatics. For the sake of comparison, several studies performed in animal models of the disease are also included. Inconsistencies observed in human studies are discussed and conclusions as well as trends from the current state of the litterature on the matter are proposed. Finally, the different points of regulation that can affect the amplitude of the TGFβ1 response are briefly revised and the possibility that TGFβ1 is disregulated at another level in asthma, rather than simply in its expression, is highlighted
    • …
    corecore