17 research outputs found

    Transforming Growth Factor β Signaling Pathway Associated Gene Polymorphisms May Explain Lower Breast Cancer Risk in Western Indian Women

    Get PDF
    Transforming growth factor β1 (TGFB1) T29C and TGF β receptor type 1 (TGFBR1) 6A/9A polymorphisms have been implicated in the modulation of risk for breast cancer in Caucasian women. We analyzed these polymorphisms and combinations of their genotypes, in pre menopausal breast cancer patients (N = 182) and healthy women (N = 236) from western India as well as in breast cancer patients and healthy women from the Parsi community (N = 48 & 171, respectively). Western Indian women were characterized by a higher frequency of TGFB1*C allele of the TGF β T29C polymorphism (0.48 vs 0.44) and a significantly lower frequency of TGFBR1*6A allele of the TGFBR1 6A/9A polymorphism (0.02 vs 0.068, p<0.01) as compared to healthy Parsi women. A strong protective effect of TGFB1*29C allele was seen in younger western Indian women (<40 yrs; OR = 0.45, 95% CI 0.25–0.81). Compared to healthy women, the strikingly higher frequencies of low or intermediate TGF β signalers in patients suggested a strong influence of the combination of these genotypes on the risk for breast cancer in Parsi women (for intermediate signalers, OR = 4.47 95%CI 1.01–19.69). The frequency of low signalers in Parsi healthy women, while comparable to that reported in Europeans and Americans, was three times higher than that in healthy women from western India (10.6% vs 3.3%, p<0.01). These observations, in conjunction with the low incidence rate of breast cancer in Indian women compared to White women, raise a possibility that the higher frequency of TGFB1*29C allele and lower frequency of TGFBR1*6A allele may represent important genetic determinants that together contribute to a lower risk of breast cancer in western Indian women

    Haplotype tagging for the identification of common disease genes

    No full text
    Genome-wide linkage disequilibrium (LD) mapping of common disease genes could be more powerful than linkage analysis if the appropriate density of polymorphic markers were known and if the genotyping effort and cost of producing such an LD map could be reduced. Although different metrics that measure the extent of LD have been evaluated1, 2, 3, even the most recent studies2, 4 have not placed significant emphasis on the most informative and cost-effective method of LD mapping—that based on haplotypes. We have scanned 135 kb of DNA from nine genes, genotyped 122 single-nucleotide polymorphisms (SNPs; approximately 184,000 genotypes) and determined the common haplotypes in a minimum of 384 European individuals for each gene. Here we show how knowledge of the common haplotypes and the SNPs that tag them can be used to (i) explain the often complex patterns of LD between adjacent markers, (ii) reduce genotyping significantly (in this case from 122 to 34 SNPs), (iii) scan the common variation of a gene sensitively and comprehensively and (iv) provide key fine-mapping data within regions of strong LD. Our results also indicate that, at least for the genes studied here, the current version of dbSNP would have been of limited utility for LD mapping because many common haplotypes could not be defined. A directed re-sequencing effort of the approximately 10% of the genome in or near genes in the major ethnic groups would aid the systematic evaluation of the common variant model of common disease
    corecore