38 research outputs found

    Diagnostic algorithm for papillary urothelial tumors in the urinary bladder

    Get PDF
    Papillary urothelial neoplasms with deceptively bland cytology cannot be easily classified. We aimed to design a new algorithm that could differentiate between these neoplasms based on a scoring system. We proposed a new scoring system that enables to reproducibly diagnose non-invasive papillary urothelial tumors. In this system, each lesion was given individual scores from 0 to 3 for mitosis and cellular thickness, from 0 to 2 for cellular atypia, and an additional score for papillary fusion. These scores were combined to form a summed score allowing the tumors to be ranked as follows: 0–1 = UP, 2–4 = low malignant potential (LMP), 5–7 = low-grade transitional cell carcinoma (TCC), and 8–9 = high-grade TCC. In addition to the scoring system, ancillary studies of MIB and p53 indexes with CK20 expression pattern analyses were compared together with clinical parameters. The MIB index was strongly correlated with disease progression. Four of the 22 LMP patients (18.2%) had late recurrences, two of these four (9.1%) had progression to low-grade carcinoma. The MIB index for LMP patients was strongly associated with recurrence (recurrence vs. non-recurrence, 16.5 vs. 8.1, p < 0.001). The proposed scoring system could enhance the reproducibility to distinguish papillary urothelial neoplasms

    A Review of Time Courses and Predictors of Lipid Changes with Fenofibric Acid-Statin Combination

    Get PDF
    Fibrates activate peroxisome proliferator activated receptor Ξ± and exert beneficial effects on triglycerides, high-density lipoprotein cholesterol, and low density lipoprotein subspecies. Fenofibric acid (FA) has been studied in a large number of patients with mixed dyslipidemia, combined with a low- or moderate-dose statin. The combination of FA with simvastatin, atorvastatin and rosuvastatin resulted in greater improvement of the overall lipid profile compared with the corresponding statin dose. The long-term efficacy of FA combined with low- or moderate- dose statin has been demonstrated in a wide range of patients, including patients with type 2 diabetes mellitus, metabolic syndrome, or elderly subjects. The FA and statin combination seems to be a reasonable option to further reduce cardiovascular risk in high-risk populations, although trials examining cardiovascular disease events are missing

    Progression of diethylnitrosamine-induced hepatic carcinogenesis in carnitine-depleted rats

    No full text
    AIM: To investigate whether carnitine deficiency is a risk factor during the development of diethylnitrosamine (DENA)-induced hepatic carcinogenesis. METHODS: A total of 60 male Wistar albino rats were divided into six groups with 10 animals in each group. Rats in group I (control group) received a single intraperitoneal (i.p.) injection of normal saline. Animals in group 2 (carnitine-supplemented group) were given L-carnitine (200 mg/kg per day) in drinking water for 8 wk. Animals in group 3 (carnitine-depleted group) were given D-carnitine (200 mg/kg per day) and mildronate (200 mg/kg per day) in drinking water for 8 wk. Rats in group 4 (DENA group) were injected with a single dose of DENA (200 mg/kg, i.p.) and 2 wk later received a single dose of carbon tetrachloride (2 mL/kg) by gavage as 1:1 dilution in corn oil. Animals in group 5 (DENA-carnitine depleted group) received the same treatment as group 3 and group 4. Rats in group 6 (DENA-carnitine supplemented group) received the same treatment as group 2 and group 4.RESULTS: Administration of DENA resulted in a significant increase in alanine transaminase (ALT), gamma-glutamyl transferase (G-GT), alkaline phosphatase (ALP), total bilirubin, thiobarbituric acid reactive substances (TBARS) and total nitrate/ nitrite (NOx) and a significant decrease in reduced glutathione (GSH), glutathione peroxidase (GSHPx), catalase (CAT) and total carnitine content in liver tissues. In the carnitine-depleted rat model, DENA induced a dramatic increase in serum ALT, G-GT, ALP and total bilirubin, as well as a progressive reduction in total carnitine content in liver tissues. Interestingly, L-carnitine supplementation resulted in a complete reversal of the increase in liver enzymes, TBARS and NOx, and a decrease in total carnitine, GSH, GSHPx, and CAT induced by DENA, compared with the control values. Histopathological examination of liver tissues confirmed the biochemical data, where L-carnitine prevented DENA-induced hepatic carcinogenesis while D-carnitine-mildronate aggravated DENA-induced hepatic damage.CONCLUSION: Data from this study suggest for the first time that: (1) carnitine deficiency is a risk factor and should be viewed as a mechanism in DENA-induced hepatic carcinogenesis; (2) oxidative stress plays an important role but is not the only cause of DENA-induced hepatic carcinogenesis; and (3) long-term L-carnitine supplementation prevents the development of DENA-induced liver cancer. (C) 2009 The WIG Press and Baishideng. All rights reserved
    corecore