36 research outputs found

    Novel spectrophotometric method for determination of cinacalcet hydrochloride in its tablets via derivatization with 1,2-naphthoquinone-4-sulphonate

    Get PDF
    This study represents the first report on the development of a novel spectrophotometric method for determination of cinacalcet hydrochloride (CIN) in its tablet dosage forms. Studies were carried out to investigate the reaction between CIN and 1,2-naphthoquinone-4-sulphonate (NQS) reagent. In alkaline medium (pH 8.5), an orange red-colored product exhibiting maximum absorption peak (λmax) at 490 nm was produced. The stoichiometry and kinetic of the reaction were investigated and the reaction mechanism was postulated. This color-developing reaction was employed in the development of a simple and rapid visible-spectrophotometric method for determination of CIN in its tablets. Under the optimized reaction conditions, Beer's law correlating the absorbance with CIN concentration was obeyed in the range of 3 - 100 ÎŒg/ml with good correlation coefficient (0.9993). The molar absorptivity (Δ) was 4.2 × 105 l/mol/cm. The limits of detection and quantification were 1.9 and 5.7 ÎŒg/ml, respectively. The precision of the method was satisfactory; the values of relative standard deviations (RSD) did not exceed 2%. No interference was observed from the excipients that are present in the tablets. The proposed method was applied successfully for the determination of CIN in its pharmaceutical tablets with good accuracy and precisions; the label claim percentage was 100.80 - 102.23 ± 1.27 - 1.62%. The results were compared favorably with those of a reference pre-validated method. The method is practical and valuable in terms of its routine application in quality control laboratories

    Pharmacology education for nurse prescribing students – a lesson in reusable learning objects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The shift away from a biological science to a social science model of nursing care has resulted in a reduction in pharmacology knowledge and understanding in pre-registration nursing students. This has a significant impact on nurse prescribing training where pharmacology is a critical component of the course from a patient safety perspective.</p> <p>Methods</p> <p>Reusable learning objects (RLOs) are electronic resources based on a single learning objective which use high quality graphics and audio to help engagement with the material and to facilitate learning. This study used questionnaire data from three successive cohorts of nurse prescribing students (n = 84) to evaluate the use of RLOs focussed around pharmacology concepts to promote the understanding of these concepts in students. A small number of students (n = 10) were followed up by telephone interview one year after qualification to gain further insight into students' perceptions of the value of RLOs as an educational tool.</p> <p>Results</p> <p>Students' perceptions of their own understanding of pharmacology concepts increased substantially following the introduction of RLOs to supplement the pharmacology component of the course. Student evaluation of the RLOs themselves was extremely positive with a number of students continuing to access these tools post-qualification.</p> <p>Conclusion</p> <p>The use of RLOs to support the pharmacology component of nurse prescribing courses successfully resulted in a perceived increase in pharmacology understanding, with some students directly implicating these educational tools in developing confidence in their own prescribing abilities.</p
    corecore