256 research outputs found

    Behavioral and psychosocial effects of rapid genetic counseling and testing in newly diagnosed breast cancer patients: Design of a multicenter randomized clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been estimated that between 5% and 10% of women diagnosed with breast cancer have a hereditary form of the disease, primarily caused by a <it>BRCA1 </it>or <it>BRCA2 </it>gene mutation. Such women have an increased risk of developing a new primary breast and/or ovarian tumor, and may therefore opt for preventive surgery (e.g., bilateral mastectomy, oophorectomy). It is common practice to offer high-risk patients genetic counseling and DNA testing after their primary treatment, with genetic test results being available within 4-6 months. However, some non-commercial laboratories can currently generate test results within 3 to 6 weeks, and thus make it possible to provide <it>rapid </it>genetic counseling and testing (RGCT) prior to primary treatment. The aim of this study is to determine the effect of RGCT on treatment decisions and on psychosocial health.</p> <p>Methods/Design</p> <p>In this randomized controlled trial, 255 newly diagnosed breast cancer patients with at least a 10% risk of carrying a <it>BRCA </it>gene mutation are being recruited from 12 hospitals in the Netherlands. Participants are randomized in a 2:1 ratio to either a RGCT intervention group (the offer of RGCT directly following diagnosis with tests results available before surgical treatment) or to a usual care control group. The primary behavioral outcome is the uptake of direct bilateral mastectomy or delayed prophylactic contralateral mastectomy. Psychosocial outcomes include cancer risk perception, cancer-related worry and distress, health-related quality of life, decisional satisfaction and the perceived need for and use of additional decisional counseling and psychosocial support. Data are collected via medical chart audits and self-report questionnaires administered prior to randomization, and at 6 month and at 12 month follow-up.</p> <p>Discussion</p> <p>This trial will provide essential information on the impact of RGCT on the choice of primary surgical treatment among women with breast cancer with an increased risk of hereditary cancer. This study will also provide data on the psychosocial consequences of RGCT and of risk-reducing behavior.</p> <p>Trial registration</p> <p>The study is registered at the Netherlands Trial Register (NTR1493) and ClinicalTrials.gov (NCT00783822).</p

    Pre-Clinical Drug Prioritization via Prognosis-Guided Genetic Interaction Networks

    Get PDF
    The high rates of failure in oncology drug clinical trials highlight the problems of using pre-clinical data to predict the clinical effects of drugs. Patient population heterogeneity and unpredictable physiology complicate pre-clinical cancer modeling efforts. We hypothesize that gene networks associated with cancer outcome in heterogeneous patient populations could serve as a reference for identifying drug effects. Here we propose a novel in vivo genetic interaction which we call ‘synergistic outcome determination’ (SOD), a concept similar to ‘Synthetic Lethality’. SOD is defined as the synergy of a gene pair with respect to cancer patients' outcome, whose correlation with outcome is due to cooperative, rather than independent, contributions of genes. The method combines microarray gene expression data with cancer prognostic information to identify synergistic gene-gene interactions that are then used to construct interaction networks based on gene modules (a group of genes which share similar function). In this way, we identified a cluster of important epigenetically regulated gene modules. By projecting drug sensitivity-associated genes on to the cancer-specific inter-module network, we defined a perturbation index for each drug based upon its characteristic perturbation pattern on the inter-module network. Finally, by calculating this index for compounds in the NCI Standard Agent Database, we significantly discriminated successful drugs from a broad set of test compounds, and further revealed the mechanisms of drug combinations. Thus, prognosis-guided synergistic gene-gene interaction networks could serve as an efficient in silico tool for pre-clinical drug prioritization and rational design of combinatorial therapies

    NANOG Reporter Cell Lines Generated by Gene Targeting in Human Embryonic Stem Cells

    Get PDF
    Background: Pluripotency and self-renewal of human embryonic stem cells (hESCs) is mediated by a complex interplay between extra- and intracellular signaling pathways, which regulate the expression of pluripotency-specific transcription factors. The homeodomain transcription factor NANOG plays a central role in maintaining hESC pluripotency, but the precise role and regulation of NANOG are not well defined. Methodology/Principal Findings: To facilitate the study of NANOG expression and regulation in viable hESC cultures, we generated fluorescent NANOG reporter cell lines by gene targeting in hESCs. In these reporter lines, the fluorescent reporter gene was co-expressed with endogenous NANOG and responded to experimental induction or repression of the NANOG promoter with appropriate changes in expression levels. Furthermore, NANOG reporter lines facilitated the separation of hESC populations based on NANOG expression levels and their subsequent characterization. Gene expression arrays on isolated hESC subpopulations revealed genes with differential expression in NANOG high and NANOG low hESCs, providing candidates for NANOG downstream targets hESCs. Conclusion/Significance: The newly derived NANOG reporter hESC lines present novel tools to visualize NANOG expression in viable hESCs. In future applications, these reporter lines can be used to elucidate the function and regulation of NANO

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Relationship between the morphology of the foveal avascular zone, retinal structure, and macular circulation in patients with diabetes mellitus

    Get PDF
    Diabetic Retinopathy (DR) is an extremely severe and common degenerative disease. The purpose of this study was to quantify the relationship between various parameters including the Foveal Avascular Zone (FAZ) morphology, retinal layer thickness, and retinal hemodynamic properties in healthy controls and patients with diabetes mellitus (DM) with and with no mild DR (MDR) using Spectral-Domain Optical Coherence Tomography (Spectralis SDOCT, Heidelberg Engineering GmbH, Germany) and the Retinal Function Imager (Optical Imaging, Ltd., Rehovot, Israel). Our results showed a higher FAZ area and diameter in MDR patients. Blood flow analysis also showed that there is a significantly smaller venous blood flow velocity in MDR patients. Also, a significant difference in roundness was observed between DM and MDR groups supporting the development of asymmetrical FAZ expansion with worsening DR. Our results suggest a potential anisotropy in the mechanical properties of the diabetic retina with no retinopathy that may trigger the FAZ elongation in a preferred direction resulting in either thinning or thickening of intraretinal layers in the inner and outer segments of the retina as a result of autoregulation. A detailed understanding of these relationships may facilitate earlier detection of DR, allowing for preservation of vision and better clinical outcomes

    An Introduction to Sphingolipid Metabolism and Analysis by New Technologies

    Get PDF
    Sphingolipids (SP) are a complex class of molecules found in essentially all eukaryotes and some prokaryotes and viruses where they influence membrane structure, intracellular signaling, and interactions with the extracellular environment. Because of the combinatorial nature of their biosynthesis, there are thousands of SP subspecies varying in the lipid backbones and complex phospho- and glycoheadgroups. Therefore, comprehensive or “sphingolipidomic” analyses (structure-specific, quantitative analyses of all SP, or at least all members of a critical subset) are needed to know which and how much of these subspecies are present in a system as a step toward understanding their functions. Mass spectrometry and related novel techniques are able to quantify a small fraction, but nonetheless a substantial number, of SP and are beginning to provide information about their localization. This review summarizes the basic metabolism of SP and state-of-art mass spectrometric techniques that are producing insights into SP structure, metabolism, functions, and some of the dysfunctions of relevance to neuromedicine

    Proteomic Analysis of Chikungunya Virus Infected Microgial Cells

    Get PDF
    Chikungunya virus (CHIKV) is a recently re-emerged public health problem in many countries bordering the Indian Ocean and elsewhere. Chikungunya fever is a relatively self limiting febrile disease, but the consequences of chikungunya fever can include a long lasting, debilitating arthralgia, and occasional neurological involvement has been reported. Macrophages have been implicated as an important cell target of CHIKV with regards to both their role as an immune mediator, as well evidence pointing to long term viral persistence in these cells. Microglial cells are the resident brain macrophages, and so this study sought to define the proteomic changes in a human microglial cell line (CHME-5) in response to CHIKV infection. GeLC-MS/MS analysis of CHIKV infected and mock infected cells identified some 1455 individual proteins, of which 90 proteins, belonging to diverse cellular pathways, were significantly down regulated at a significance level of p<0.01. Analysis of the protein profile in response to infection did not support a global inhibition of either normal or IRES-mediated translation, but was consistent with the targeting of specific cellular pathways including those regulating innate antiviral mechanisms

    Molecular evolution of cyclin proteins in animals and fungi

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The passage through the cell cycle is controlled by complexes of cyclins, the regulatory units, with cyclin-dependent kinases, the catalytic units. It is also known that cyclins form several families, which differ considerably in primary structure from one eukaryotic organism to another. Despite these lines of evidence, the relationship between the evolution of cyclins and their function is an open issue. Here we present the results of our study on the molecular evolution of A-, B-, D-, E-type cyclin proteins in animals and fungi.</p> <p>Results</p> <p>We constructed phylogenetic trees for these proteins, their ancestral sequences and analyzed patterns of amino acid replacements. The analysis of infrequently fixed atypical amino acid replacements in cyclins evidenced that accelerated evolution proceeded predominantly during paralog duplication or after it in animals and fungi and that it was related to aromorphic changes in animals. It was shown also that evolutionary flexibility of cyclin function may be provided by consequential reorganization of regions on protein surface remote from CDK binding sites in animal and fungal cyclins and by functional differentiation of paralogous cyclins formed in animal evolution.</p> <p>Conclusions</p> <p>The results suggested that changes in the number and/or nature of cyclin-binding proteins may underlie the evolutionary role of the alterations in the molecular structure of cyclins and their involvement in diverse molecular-genetic events.</p

    Deciphering the stem cell machinery as a basis for understanding the molecular mechanism underlying reprogramming

    Get PDF
    Stem cells provide fascinating prospects for biomedical applications by combining the ability to renew themselves and to differentiate into specialized cell types. Since the first isolation of embryonic stem (ES) cells about 30 years ago, there has been a series of groundbreaking discoveries that have the potential to revolutionize modern life science. For a long time, embryos or germ cell-derived cells were thought to be the only source of pluripotency—a dogma that has been challenged during the last decade. Several findings revealed that cell differentiation from (stem) cells to mature cells is not in fact an irreversible process. The molecular mechanism underlying cellular reprogramming is poorly understood thus far. Identifying how pluripotency maintenance takes place in ES cells can help us to understand how pluripotency induction is regulated. Here, we review recent advances in the field of stem cell regulation focusing on key transcription factors and their functional interplay with non-coding RNAs

    Effects of histocompatibility and host immune responses on the tumorigenicity of pluripotent stem cells

    Get PDF
    Pluripotent stem cells hold great promises for regenerative medicine. They might become useful as a universal source for a battery of new cell replacement therapies. Among the major concerns for the clinical application of stem cell-derived grafts are the risks of immune rejection and tumor formation. Pluripotency and tumorigenicity are closely linked features of pluripotent stem cells. However, the capacity to form teratomas or other tumors is not sufficiently described by inherited features of a stem cell line or a stem cell-derived graft. The tumorigenicity always depends on the inability of the recipient to reject the tumorigenic cells. This review summarizes recent data on the tumorigenicity of pluripotent stem cells in immunodeficient, syngeneic, allogeneic, and xenogeneic hosts. The effects of immunosuppressive treatment and cell differentiation are discussed. Different immune effector mechanisms appear to be involved in the rejection of undifferentiated and differentiated cell populations. Elements of the innate immune system, such as natural killer cells and the complement system, which are active also in syngeneic recipients, appear to preferentially reject undifferentiated cells. This effect could reduce the risk of tumor formation in immunocompetent recipients. Cell differentiation apparently increases susceptibility to rejection by the adaptive immune system in allogeneic hosts. The current data suggest that the immune system of the recipient has a major impact on the outcome of pluripotent stem cell transplantation, whether it is rejection, engraftment, or tumor development. This has to be considered when the results of experimental transplantation models are interpreted and even more when translation into clinics is planned
    corecore