20,231 research outputs found

    Corante e óleo aromático de Curcuma longa: aditivos naturais para alimentos.

    Get PDF
    bitstream/item/65518/1/CTAA-PESQ.-AND.-7-86.pd

    Morphological transition between diffusion-limited and ballistic aggregation growth patterns

    Full text link
    In this work, the transition between diffusion-limited and ballistic aggregation models was revisited using a model in which biased random walks simulate the particle trajectories. The bias is controlled by a parameter λ\lambda, which assumes the value λ=0\lambda=0 (1) for ballistic (diffusion-limited) aggregation model. Patterns growing from a single seed were considered. In order to simulate large clusters, a new efficient algorithm was developed. For λ0\lambda \ne 0, the patterns are fractal on the small length scales, but homogeneous on the large ones. We evaluated the mean density of particles ρˉ\bar{\rho} in the region defined by a circle of radius rr centered at the initial seed. As a function of rr, ρˉ\bar{\rho} reaches the asymptotic value ρ0(λ)\rho_0(\lambda) following a power law ρˉ=ρ0+Arγ\bar{\rho}=\rho_0+Ar^{-\gamma} with a universal exponent γ=0.46(2)\gamma=0.46(2), independent of λ\lambda. The asymptotic value has the behavior ρ01λβ\rho_0\sim|1-\lambda|^\beta, where β=0.26(1)\beta= 0.26(1). The characteristic crossover length that determines the transition from DLA- to BA-like scaling regimes is given by ξ1λν\xi\sim|1-\lambda|^{-\nu}, where ν=0.61(1)\nu=0.61(1), while the cluster mass at the crossover follows a power law Mξ1λαM_\xi\sim|1 -\lambda|^{-\alpha}, where α=0.97(2)\alpha=0.97(2). We deduce the scaling relations \beta=\n u\gamma and β=2να\beta=2\nu-\alpha between these exponents.Comment: 7 pages, 8 figure

    Modelling of epitaxial film growth with a Ehrlich-Schwoebel barrier dependent on the step height

    Full text link
    The formation of mounded surfaces in epitaxial growth is attributed to the presence of barriers against interlayer diffusion in the terrace edges, known as Ehrlich-Schwoebel (ES) barriers. We investigate a model for epitaxial growth using a ES barrier explicitly dependent on the step height. Our model has an intrinsic topological step barrier even in the absence of an explicit ES barrier. We show that mounded morphologies can be obtained even for a small barrier while a self-affine growth, consistent with the Villain-Lai-Das Sarma equation, is observed in absence of an explicit step barrier. The mounded surfaces are described by a super-roughness dynamical scaling characterized by locally smooth (faceted) surfaces and a global roughness exponent α>1\alpha>1. The thin film limit is featured by surfaces with self-assembled three-dimensional structures having an aspect ratio (height/width) that may increase or decrease with temperature depending on the strength of step barrier.Comment: To appear in J. Phys. Cond. Matter; 3 movies as supplementary materia

    Universal fluctuations in radial growth models belonging to the KPZ universality class

    Full text link
    We investigate the radius distributions (RD) of surfaces obtained with large-scale simulations of radial clusters that belong to the KPZ universality class. For all investigated models, the RDs are given by the Tracy-Widom distribution of the Gaussian unitary ensemble, in agreement with the conjecture of the KPZ universality class for curved surfaces. The quantitative agreement was also confirmed by two-point correlation functions asymptotically given by the covariance of the Airy2_2 process. Our simulation results fill the last lacking gap of the conjecture that had been recently verified analytically and experimentally.Comment: 5 pages, 5 figure
    corecore