20,231 research outputs found
Corante e óleo aromático de Curcuma longa: aditivos naturais para alimentos.
bitstream/item/65518/1/CTAA-PESQ.-AND.-7-86.pd
Morphological transition between diffusion-limited and ballistic aggregation growth patterns
In this work, the transition between diffusion-limited and ballistic
aggregation models was revisited using a model in which biased random walks
simulate the particle trajectories. The bias is controlled by a parameter
, which assumes the value (1) for ballistic
(diffusion-limited) aggregation model. Patterns growing from a single seed were
considered. In order to simulate large clusters, a new efficient algorithm was
developed. For , the patterns are fractal on the small length
scales, but homogeneous on the large ones. We evaluated the mean density of
particles in the region defined by a circle of radius centered
at the initial seed. As a function of , reaches the asymptotic
value following a power law
with a universal exponent , independent of . The
asymptotic value has the behavior , where . The characteristic crossover length that determines the transition
from DLA- to BA-like scaling regimes is given by ,
where , while the cluster mass at the crossover follows a power
law , where . We deduce the
scaling relations \beta=\n u\gamma and between these
exponents.Comment: 7 pages, 8 figure
Modelling of epitaxial film growth with a Ehrlich-Schwoebel barrier dependent on the step height
The formation of mounded surfaces in epitaxial growth is attributed to the
presence of barriers against interlayer diffusion in the terrace edges, known
as Ehrlich-Schwoebel (ES) barriers. We investigate a model for epitaxial growth
using a ES barrier explicitly dependent on the step height. Our model has an
intrinsic topological step barrier even in the absence of an explicit ES
barrier. We show that mounded morphologies can be obtained even for a small
barrier while a self-affine growth, consistent with the Villain-Lai-Das Sarma
equation, is observed in absence of an explicit step barrier. The mounded
surfaces are described by a super-roughness dynamical scaling characterized by
locally smooth (faceted) surfaces and a global roughness exponent .
The thin film limit is featured by surfaces with self-assembled
three-dimensional structures having an aspect ratio (height/width) that may
increase or decrease with temperature depending on the strength of step
barrier.Comment: To appear in J. Phys. Cond. Matter; 3 movies as supplementary
materia
Universal fluctuations in radial growth models belonging to the KPZ universality class
We investigate the radius distributions (RD) of surfaces obtained with
large-scale simulations of radial clusters that belong to the KPZ universality
class. For all investigated models, the RDs are given by the Tracy-Widom
distribution of the Gaussian unitary ensemble, in agreement with the conjecture
of the KPZ universality class for curved surfaces. The quantitative agreement
was also confirmed by two-point correlation functions asymptotically given by
the covariance of the Airy process. Our simulation results fill the last
lacking gap of the conjecture that had been recently verified analytically and
experimentally.Comment: 5 pages, 5 figure
- …