6 research outputs found

    Ripple Texturing of Suspended Graphene Atomic Membranes

    Full text link
    Graphene is the nature's thinnest elastic membrane, with exceptional mechanical and electrical properties. We report the direct observation and creation of one-dimensional (1D) and 2D periodic ripples in suspended graphene sheets, using spontaneously and thermally induced longitudinal strains on patterned substrates, with control over their orientations and wavelengths. We also provide the first measurement of graphene's thermal expansion coefficient, which is anomalously large and negative, ~ -7x10^-6 K^-1 at 300K. Our work enables novel strain-based engineering of graphene devices.Comment: 15 pages, 4 figure

    High-yield production of graphene by liquid-phase exfoliation of graphite

    No full text
    Fully exploiting the properties of graphene will require a method for the mass production of this remarkable material. Two main routes are possible: large-scale growth or large-scale exfoliation. Here, we demonstrate graphene dispersions with concentrations up to ~0.01 mg m1-1, produced by dispersion and exfoliation of graphite in organic solvents such as N-methyl-pyrrolidone. This is possible because the energy required to exfoliate graphene is balanced by the solvent -graphene interaction for solvents whose surface energies match that of graphene. We confirm the presence of individual graphene sheets by Raman spectroscopy, transmission electron microscopy and electron diffraction. Our method results in a monolayer yield of ~1 wt%, which could potentially be improved to 7–12 wt% with further processing. The absence of defects or oxides is confirmed by X-ray photoelectron, infrared and Raman spectroscopies. We are able to produce semi-transparent conducting films and conducting composites. Solution processing of graphene opens up a range of potential large-area applications, from device and sensor fabrication to liquid-phase chemistry

    Substrate-induced array of quantum dots in a single-walled carbon nanotube

    No full text
    Single-walled carbon nanotubes are model one-dimensional structures. They can also be made into zero-dimensional structures; quantum wells can be created in nanotubes by inserting metallofullerenes, by mechanical cutting or by the application of mechanical strain. Here, we report that quantum dot arrays can be produced inside nanotubes simply by causing a misalignment between the nanotube and the 100 direction of a supporting silver substrate. This method does not require chemical or physical treatment of either the substrate or the nanotube. A short quantum dot confinement length of 6nm results in large energy splittings.close151
    corecore