1,849 research outputs found

    Remote sensing of coccolithophore blooms in selected oceanic regions using the PhytoDOAS method applied to hyper-spectral satellite data

    Get PDF
    In this study temporal variations of coccolithophore blooms are investigated using satellite data. Eight years (from 2003 to 2010) of data of SCIAMACHY, a hyper-spectral satellite sensor on-board ENVISAT, were processed by the PhytoDOAS method to monitor the biomass of coccolithophores in three selected regions. These regions are characterized by frequent occurrence of large coccolithophore blooms. The retrieval results, shown as monthly mean time series, were compared to related satellite products, including the total surface phytoplankton, i.e. total chlorophyll a (from GlobColour merged data) and the particulate inorganic carbon (from MODIS-Aqua). The inter-annual variations of the phytoplankton bloom cycles and their maximum monthly mean values have been compared in the three selected regions to the variations of the geophysical parameters: sea-surface temperature (SST), mixed-layer depth (MLD) and surface wind-speed, which are known to affect phytoplankton dynamics. For each region, the anomalies and linear trends of the monitored parameters over the period of this study have been computed. The patterns of total phytoplankton biomass and specific dynamics of coccolithophore chlorophyll a in the selected regions are discussed in relation to other studies. The PhytoDOAS results are consistent with the two other ocean color products and support the reported dependencies of coccolithophore biomass dynamics on the compared geophysical variables. This suggests that PhytoDOAS is a valid method for retrieving coccolithophore biomass and for monitoring its bloom developments in the global oceans. Future applications of time series studies using the PhytoDOAS data set are proposed, also using the new upcoming generations of hyper-spectral satellite sensors with improved spatial resolution

    Constraints on the star formation histories of galaxies in the Local Cosmological Volume

    Get PDF
    IB is supported by an Alexander von Humboldt postdoctoral research fellowship. PK acknowledges support from the Grant Agency of the Czech Republic under grant number 20-21855S. This work benefited from the International Space Science Institute (ISSI/ISSI-BJ) in Bern and Beijing, thanks to the funding of the team ‘Chemical abundances in the ISM: the litmus test of stellar IMF variations in galaxies across cosmic time’ (Donatella Romano and Zhi-Yu Zhang).The majority of galaxies with current star formation rates (SFRs), SFRo≄10−3M⊙yr−1⁠, in the Local Cosmological Volume, where observations should be reliable, have the property that their observed SFRo is larger than their average SFR. This is in tension with the evolution of galaxies described by delayed-τ models, according to which the opposite would be expected. The tension is apparent in that local galaxies imply the star formation time-scale τ ≈ 6.7 Gyr, much longer than the 3.5–4.5 Gyr obtained using an empirically determined main sequence at several redshifts. Using models where the SFR is a power law in time of the form ∝(t − t1)η for t1 = 1.8 Gyr (with no stars forming prior to t1) implies that η = 0.18 ± 0.03. This suggested near-constancy of a galaxy’s SFR over time raises non-trivial problems for the evolution and formation time of galaxies, but is broadly consistent with the observed decreasing main sequence with increasing age of the Universe.Publisher PDFPeer reviewe

    On the degree of stochastic asymmetry in the tidal tails of star clusters

    Full text link
    Context: Tidal tails of star clusters are commonly understood to be populated symmetrically. Recently, the analysis of Gaia data revealed large asymmetries between the leading and trailing tidal tail arms of the four open star clusters Hyades, Praesepe, Coma Berenices and NGC 752. Aims: As the evaporation of stars from star clusters into the tidal tails is a stochastic process, the degree of stochastic asymmetry is quantified in this work. Methods: For each star cluster 1000 configurations of test particles are integrated in the combined potential of a Plummer sphere and the Galactic tidal field over the life time of the particular star cluster. For each of the four star clusters the distribution function of the stochastic asymmetry is determined and compared with the observed asymmetry. Results: The probabilities for a stochastic origin of the observed asymmetry of the four star clusters are: Praesepe ~1.7 sigma, Coma Berenices ~2.4 sigma, Hyades ~6.7 sigma, NGC 752 ~1.6 sigma. Conclusions: In the case of Praesepe, Coma Berenices and NGC 752 the observed asymmetry can be interpreted as a stochastic evaporation event. However, for the formation of the asymmetric tidal tails of the Hyades additional dynamical processes beyond a pure statistical evaporation effect are required.Comment: accepted for publication by A&

    Improvement to the PhytoDOAS method for identification of coccolithophores using hyper-spectral satellite data

    Get PDF
    The goal of this study was to improve PhytoDOAS, which is a new retrieval method for quantitative identification of major phytoplankton functional types (PFTs) using hyper-spectral satellite data. PhytoDOAS is an extension of the Differential Optical Absorption Spectroscopy (DOAS, a method for detection of atmospheric trace gases), developed for remote identification of oceanic phytoplankton groups. Thus far, PhytoDOAS has been successfully exploited to identify cyanobacteria and diatoms over the global ocean from SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) hyper-spectral data. This study aimed to improve PhytoDOAS for remote identification of coccolithophores, another functional group of phytoplankton. The main challenge for retrieving more PFTs by PhytoDOAS is to overcome the correlation effects between different PFT absorption spectra. Different PFTs are composed of different types and amounts of pigments, but also have pigments in common, e.g. chl <i>a</i>, causing correlation effects in the usual performance of the PhytoDOAS retrieval. Two ideas have been implemented to improve PhytoDOAS for the PFT retrieval of more phytoplankton groups. Firstly, using the fourth-derivative spectroscopy, the peak positions of the main pigment components in each absorption spectrum have been derived. After comparing the corresponding results of major PFTs, the optimized fit-window for the PhytoDOAS retrieval of each PFT was determined. Secondly, based on the results from derivative spectroscopy, a simultaneous fit of PhytoDOAS has been proposed and tested for a selected set of PFTs (coccolithophores, diatoms and dinoflagellates) within an optimized fit-window, proven by spectral orthogonality tests. The method was then applied to the processing of SCIAMACHY data over the year 2005. Comparisons of the PhytoDOAS coccolithophore retrievals in 2005 with other coccolithophore-related data showed similar patterns in their seasonal distributions, especially in the North Atlantic and the Arctic Sea. The seasonal patterns of the PhytoDOAS coccolithophores indicated very good agreement with the coccolithophore modeled data from the NASA Ocean Biochemical Model (NOBM), as well as with the global distributions of particulate inorganic carbon (PIC), provided by MODIS (MODerate resolution Imaging Spectroradiometer)-Aqua level-3 products. Moreover, regarding the fact that coccolithophores belong to the group of haptophytes, the PhytoDOAS seasonal coccolithophores showed good agreement with the global distribution of haptophytes, derived from synoptic pigment relationships applied to SeaWiFS chl <i>a</i>. As a case study, the simultaneous mode of PhytoDOAS has been applied to SCIAMACHY data for detecting a coccolithophore bloom which was consistent with the MODIS RGB image and the MODIS PIC map of the bloom, indicating the functionality of the method also in short-term retrievals

    A Laser System for the Spectroscopy of Highly-Charged Bismuth Ions

    Full text link
    We present and characterize a laser system for the spectroscopy on highly-charged ^209Bi^82+ ions at a wavelength of 243.87 nm. For absolute frequency stabilization, the laser system is locked to a near-infra-red laser stabilized to a rubidium transition line using a transfer cavity based locking scheme. Tuning of the output frequency with high precision is achieved via a tunable rf offset lock. A sample-and-hold technique gives an extended tuning range of several THz in the UV. This scheme is universally applicable to the stabilization of laser systems at wavelengths not directly accessible to atomic or molecular resonances. We determine the frequency accuracy of the laser system using Doppler-free absorption spectroscopy of Te_2 vapour at 488 nm. Scaled to the target wavelength of 244 nm, we achieve a frequency uncertainty of \sigma_{244nm} = 6.14 MHz (one standard deviation) over six days of operation.Comment: Contribution to the special issue on "Trapped Ions" in "Applied Physics B

    Enriching the evidence base of co-creation research in public health with methodological principles of critical realism

    Get PDF
    With the popularity of co-creation research in public health and other fields, there is a need to strengthen its evidence-base by developing a framework based on meta-theoretical principles. The lack of applying meta-theoretical principles in co-creation research impedes the theory- and evidence building. Critical realism seems a promising candidate for providing meta-theoretical principles to enrich the evidence base of co-creation research in public health. To this purpose we searched for relevant papers on critical realism methodological principles, clarified and subsequently applied such principles to a co-creation public health case study. We provide explanatory steps to apply five principles; 1) focusing on understanding an event, like childhood over-weight, 2) exploring the broader structure and context surrounding the event, 3) constructing hypotheses about the underlying mechanism(s) of an event, 4) empirical testing to corroborate those hypotheses, and 5) using multiple methods and triangulation. Further, this study shows that critical realism can enrich co-creation research in public health by iteratively building theory and evidence following the five proposed principles

    The ENCOMPASS framework:a practical guide for the evaluation of public health programmes in complex adaptive systems

    Get PDF
    BackgroundSystems thinking embraces the complexity of public health problems, including childhood overweight and obesity. It aids in understanding how factors are interrelated, and it can be targeted to produce favourable changes in a system. There is a growing call for systems approaches in public health research, yet limited practical guidance is available on how to evaluate public health programmes within complex adaptive systems. The aim of this paper is to present an evaluation framework that supports researchers in designing systems evaluations in a comprehensive and practical way.MethodsWe searched the literature for existing public health systems evaluation studies. Key characteristics on how to conduct a systems evaluation were extracted and compared across studies. Next, we overlaid the identified characteristics to the context of the Lifestyle Innovations Based on Youth Knowledge and Experience (LIKE) programme evaluation and analyzed which characteristics were essential to carry out the LIKE evaluation. This resulted in the Evaluation of Programmes in Complex Adaptive Systems (ENCOMPASS) framework.ResultsThe ENCOMPASS framework includes five iterative stages: (1) adopting a system dynamics perspective on the overall evaluation design; (2) defining the system boundaries; (3) understanding the pre-existing system to inform system changes; (4) monitoring dynamic programme output at different system levels; and (5) measuring programme outcome and impact in terms of system changes.ConclusionsThe value of ENCOMPASS lies in the integration of key characteristics from existing systems evaluation studies, as well as in its practical, applied focus. It can be employed in evaluating public health programmes in complex adaptive systems. Furthermore, ENCOMPASS provides guidance for the entire evaluation process, all the way from understanding the system to developing actions to change it and to measuring system changes. By the nature of systems thinking, the ENCOMPASS framework will likely evolve further over time, as the field expands with more completed studies
    • 

    corecore