9 research outputs found

    The ABC130 barrel module prototyping programme for the ATLAS strip tracker

    Full text link
    For the Phase-II Upgrade of the ATLAS Detector, its Inner Detector, consisting of silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100 % silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: an early program using readout chips designed using a 250 nm fabrication process (ABCN-25) and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests.Comment: 82 pages, 66 figure

    Manufacturing of SIG Sauer 9 x 19 mm Pistols

    No full text
    This article details the manufacturing processes and assembly of 9 x 19 mm calibre SIG Sauer duty, sporting and limited edition pistols produced at the factory in Eckernforde, Germany. The principal manufacturing focus for this paper is SIG Sauer barrel production, as two methods of rifling are utilized in their pistols; electrochemical rifling and cold hammer forged rifling. However, pistol slide and frame manufacturing is also discussed, as well as assembly, proofing and test firing of firearms before sale

    Numerical classification of curvilinear structures for the identification of pistol barrels

    No full text
    This paper demonstrates a numerical pattern recognition method applied to curvilinear image structures. These structures are extracted from physical cross-sections of cast internal pistol barrel surfaces. Variations in structure arise from gun design and manufacturing method providing a basis for discrimination and identification. Binarised curvilinear land transition images are processed with fast Fourier transform on which principal component analysis is performed. One-way analysis of variance (95 % confidence interval) concludes significant differentiation between 11 barrel manufacturers when calculating weighted Euclidean distance between any trio of land transitions and an average land transition for each barrel in the database. The proposed methodology is therefore a promising novel approach for the classification and identification of firearms

    The ABC130 barrel module prototyping programme for the ATLAS strip tracker

    No full text
    For the Phase-II Upgrade of the ATLAS Detector [1], its Inner Detector, consisting of silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100% silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: an early program using readout chips designed using a 250 nm fabrication process (ABCN-250) [2,2] and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests
    corecore