1,059 research outputs found
Why the Tsirelson bound?
Wheeler's question 'why the quantum' has two aspects: why is the world
quantum and not classical, and why is it quantum rather than superquantum,
i.e., why the Tsirelson bound for quantum correlations? I discuss a remarkable
answer to this question proposed by Pawlowski et al (2009), who provide an
information-theoretic derivation of the Tsirelson bound from a principle they
call 'information causality.'Comment: 17 page
Loading of a surface-electrode ion trap from a remote, precooled source
We demonstrate loading of ions into a surface-electrode trap (SET) from a
remote, laser-cooled source of neutral atoms. We first cool and load
neutral Sr atoms into a magneto-optical trap from an oven that
has no line of sight with the SET. The cold atoms are then pushed with a
resonant laser into the trap region where they are subsequently photoionized
and trapped in an SET operated at a cryogenic temperature of 4.6 K. We present
studies of the loading process and show that our technique achieves ion loading
into a shallow (15 meV depth) trap at rates as high as 125 ions/s while
drastically reducing the amount of metal deposition on the trap surface as
compared with direct loading from a hot vapor. Furthermore, we note that due to
multiple stages of isotopic filtering in our loading process, this technique
has the potential for enhanced isotopic selectivity over other loading methods.
Rapid loading from a clean, isotopically pure, and precooled source may enable
scalable quantum information processing with trapped ions in large, low-depth
surface trap arrays that are not amenable to loading from a hot atomic beam
High-fidelity trapped-ion quantum logic using near-field microwaves
We demonstrate a two-qubit logic gate driven by near-field microwaves in a
room-temperature microfabricated ion trap. We measure a gate fidelity of
99.7(1)\%, which is above the minimum threshold required for fault-tolerant
quantum computing. The gate is applied directly to Ca "atomic clock"
qubits (coherence time ) using the microwave
magnetic field gradient produced by a trap electrode. We introduce a
dynamically-decoupled gate method, which stabilizes the qubits against
fluctuating a.c.\ Zeeman shifts and avoids the need to null the microwave
field
Composite absorbing potentials
The multiple scattering interferences due to the addition of several
contiguous potential units are used to construct composite absorbing potentials
that absorb at an arbitrary set of incident momenta or for a broad momentum
interval.Comment: 9 pages, Revtex, 2 postscript figures. Accepted in Phys. Rev. Let
Macroscopically local correlations can violate information causality
Although quantum mechanics is a very successful theory, its foundations are
still a subject of intense debate. One of the main problems is the fact that
quantum mechanics is based on abstract mathematical axioms, rather than on
physical principles. Quantum information theory has recently provided new ideas
from which one could obtain physical axioms constraining the resulting
statistics one can obtain in experiments. Information causality and macroscopic
locality are two principles recently proposed to solve this problem. However
none of them were proven to define the set of correlations one can observe. In
this paper, we present an extension of information causality and study its
consequences. It is shown that the two above-mentioned principles are
inequivalent: if the correlations allowed by nature were the ones satisfying
macroscopic locality, information causality would be violated. This gives more
confidence in information causality as a physical principle defining the
possible correlation allowed by nature.Comment: are welcome. 6 pages, 4 figs. This is the originally submitted
version. The published version contains some bounds on quantum realizations
of d2dd isotropic boxes (table 1), found by T. Vertesi, who kindly shared
them with u
A measurement-based approach to quantum arrival times
For a quantum-mechanically spread-out particle we investigate a method for
determining its arrival time at a specific location. The procedure is based on
the emission of a first photon from a two-level system moving into a
laser-illuminated region. The resulting temporal distribution is explicitly
calculated for the one-dimensional case and compared with axiomatically
proposed expressions. As a main result we show that by means of a deconvolution
one obtains the well known quantum mechanical probability flux of the particle
at the location as a limiting distribution.Comment: 11 pages, 4 figures, submitted to Phys. Rev.
Ambiguities of arrival-time distributions in quantum theory
We consider the definition that might be given to the time at which a
particle arrives at a given place, both in standard quantum theory and also in
Bohmian mechanics. We discuss an ambiguity that arises in the standard theory
in three, but not in one, spatial dimension.Comment: LaTex, 12 pages, no figure
Quantum Time and Spatial Localization: An Analysis of the Hegerfeldt Paradox
Two related problems in relativistic quantum mechanics, the apparent
superluminal propagation of initially localized particles and dependence of
spatial localization on the motion of the observer, are analyzed in the context
of Dirac's theory of constraints. A parametrization invariant formulation is
obtained by introducing time and energy operators for the relativistic particle
and then treating the Klein-Gordon equation as a constraint. The standard,
physical Hilbert space is recovered, via integration over proper time, from an
augmented Hilbert space wherein time and energy are dynamical variables. It is
shown that the Newton-Wigner position operator, being in this description a
constant of motion, acts on states in the augmented space. States with strictly
positive energy are non-local in time; consequently, position measurements
receive contributions from states representing the particle's position at many
times. Apparent superluminal propagation is explained by noting that, as the
particle is potentially in the past (or future) of the assumed initial place
and time of localization, it has time to propagate to distant regions without
exceeding the speed of light. An inequality is proven showing the Hegerfeldt
paradox to be completely accounted for by the hypotheses of subluminal
propagation from a set of initial space-time points determined by the quantum
time distribution arising from the positivity of the system's energy. Spatial
localization can nevertheless occur through quantum interference between states
representing the particle at different times. The non-locality of the same
system to a moving observer is due to Lorentz rotation of spatial axes out of
the interference minimum.Comment: This paper is identical to the version appearing in J. Math. Phys.
41; 6093 (Sept. 2000). The published version will be found at
http://ojps.aip.org/jmp/. The paper (40 page PDF file) has been completely
revised since the last posting to this archiv
Temporal Ordering in Quantum Mechanics
We examine the measurability of the temporal ordering of two events, as well
as event coincidences. In classical mechanics, a measurement of the
order-of-arrival of two particles is shown to be equivalent to a measurement
involving only one particle (in higher dimensions). In quantum mechanics, we
find that diffraction effects introduce a minimum inaccuracy to which the
temporal order-of-arrival can be determined unambiguously. The minimum
inaccuracy of the measurement is given by dt=1/E where E is the total kinetic
energy of the two particles. Similar restrictions apply to the case of
coincidence measurements. We show that these limitations are much weaker than
limitations on measuring the time-of-arrival of a particle to a fixed location.Comment: New section added, arguing that order-of-arrival can be measured more
accurately than time-of-arrival. To appear in Journal of Physics
Quantum times of arrival for multiparticle states
Using the concept of crossing state and the formalism of second quantization,
we propose a prescription for computing the density of arrivals of particles
for multiparticle states, both in the free and the interacting case. The
densities thus computed are positive, covariant in time for time independent
hamiltonians, normalized to the total number of arrivals, and related to the
flux. We investigate the behaviour of this prescriptions for bosons and
fermions, finding boson enhancement and fermion depletion of arrivals.Comment: 10 a4 pages, 5 inlined figure
- …