10 research outputs found

    Evaluation of Tribological aspects of Al-Si 12 alloy and their Metal Matrix hybrid Composites produced by Liquid-metal Forging Method

    Get PDF
    Particulate Aluminium Metal Matrix Composites (Al-MMC) have emerged as advanced engineering materials in view of their improved properties. Ceramic reinforced Al-MMC were more suitable because of being economical and exhibiting isotropic properties. Al-MMCs manufacturing methods are expensive, demand skilled and complex operations and vortex liquid metallurgy results into higher porosity. The liquid-metal forging/squeezed casting of stirred molten slurry can eliminate porosity as molten metal is pressurized during solidification forming near net shapes. During many instances, influence of process parameter (PP)s on mechanical part properties is being studied. In the present study, composites were produced using Al-Si12 alloy as base material, aluminium oxide and silicon carbide particles as reinforcements by varying the PPs. Tribological tests were conducted under dry sliding condition at room temperature showed hard reinforcements in Al alloy reduced the wear rate (WR) and increased the coefficient of friction (f) for all PPs. For PPs, increasing the squeeze pressure and decreasing the pouring and die preheating temperature resulted in a reduction of WR and f with an increase in normal load and sliding velocity. Initially f falls and then raised with an increase in normal load, but only raised with growing sliding velocity compared to Aluminium base material.

    Evaluation of Tribological aspects of Al-Si 12 alloy and their Metal Matrix hybrid Composites produced by Liquid-metal Forging Method

    Get PDF
    Particulate Aluminium Metal Matrix Composites (Al-MMC) have emerged as advanced engineering materials in view of their improved properties. Ceramic reinforced Al-MMC were more suitable because of being economical and exhibiting isotropic properties. Al-MMCs manufacturing methods are expensive, demand skilled and complex operations and vortex liquid metallurgy results into higher porosity. The liquid-metal forging/squeezed casting of stirred molten slurry can eliminate porosity as molten metal is pressurized during solidification forming near net shapes. During many instances, influence of process parameter (PP)s on mechanical part properties is being studied. In the present study, composites were produced using Al-Si12 alloy as base material, aluminium oxide and silicon carbide particles as reinforcements by varying the PPs. Tribological tests were conducted under dry sliding condition at room temperature showed hard reinforcements in Al alloy reduced the wear rate (WR) and increased the coefficient of friction (f) for all PPs. For PPs, increasing the squeeze pressure and decreasing the pouring and die preheating temperature resulted in a reduction of WR and f with an increase in normal load and sliding velocity. Initially f falls and then raised with an increase in normal load, but only raised with growing sliding velocity compared to Aluminium base material.

    Modeling and Simulating the Static Structural Response and Lift Off of a Preloaded Bolted Joint on a Flange

    No full text
    The present paper describes the structural analysis performed on a preloaded bolted joint. The first joint modeled was comprised of a conventional cylindrical flange that was sliced to simplify the analysis for two bolts in lieu of four. This involved an L-shaped flat segment flange. Parametric studies were performed using elastic, large-deformation, non-linear finite element analysis to determine the influence of several factors on the bolted-joint response. The factors considered included bolt preload, contact surfaces, edge boundary conditions, and joint segment length in this first approach. The second model applied the previous preloaded torque on a complex flange to study the flange lift off. Joint response is reported in terms of displacements, gap opening, and surface strains. Most of the factors studied were determined to have minimal effect on the bolted joint response

    Bistable collapsible compliant mechanisms and shape-changing structures that comprise them

    Get PDF
    A bistable collapsible compliant mechanism including a first sub-mechanism comprising opposed first and second quaternary links and multiple binary links, each link being connected to at least two other links in the sub-mechanism, and a second sub-mechanism connected to the first sub-mechanism, the second sub-mechanism also comprising opposed first and second quaternary links and multiple binary links, each link being connected to at least two other links in the sub-mechanism, wherein the bistable collapsible compliant mechanism can be alternatively be placed in a stable extended orientation in which the bistable collapsible compliant mechanism has a trapezoidal shape and in a stable contracted orientation in which the bistable collapsible compliant mechanism has a polygonal spiral shape

    A Lamina-Emergent Frustum Using a Bistable Collapsible Compliant Mechanism

    No full text
    This paper presents a new bistable collapsible compliant mechanism (BCCM) that is utilized in a lamina-emergent frustum. The mechanism is based on transforming a polygon spiral into spatial frustum shape using a mechanism composed of compliant links and joints that exhibits a bistable behavior. A number of mechanism types (graphs) were considered to implement the shape-morphing spiral, including 4-bar, 6-bar, and 8-bar chains. Our design requirements permitted the selection of a particular 8-bar chain as the basis for the BCCM. The bistable behavior was added to the mechanism by introducing a snap-through bistability as the mechanism morphs. A parametric CAD was used to perform the dimensional synthesis. The design was successfully prototyped. We anticipate that the mechanism may be useful in commercial small animal enclosures or as a frame for a solar still

    Effect of a Rapid Tooling Technique in a 3D Printed Part for Developing an EDM Electrode

    No full text
    The role of rapid tooling (RT) in additive manufacturing (AM) seems essential in improving and spreading out the vista of manufacturing proficiency. In this article, attempts were made to discover the feasibility and the accomplishments of the RT electrode in the field of electro-discharge machining (EDM). Fused deposition modeling (FDM) is one of the AM processes adopted to fabricate the EDM electrode prototype by coating with copper. The copper is deposited on FDM-built ABS plastic component for about 1 mm through thick electroplating. The copper-coated FDM (CCF) and solid copper (SC) electrodes are used to conduct experiments on a die-sinking EDM machine using tool alloy steel as a workpiece. The CCF polymer electrode can be efficiently used in EDM operations as the build time of any complex shape was substantially reduced. However, the material removal rate (MRR) is far less than that of the SC electrode. It is recommended that the CCF electrode is used for semifinishing and finishing operations in which MRR happens to be less. However, CCF can get spoiled as high temperatures are generated on the machining tool, and the plastic core hardly sustains such high temperatures

    Effect of part build orientations and sliding wear factors on tribological characteristics of FDM processed parts

    No full text
    Fused Deposition Modeling (FDM) components are commonly used for either prototypes or end products, mostly made of polymers. Polymers offer low frictional resistance to wear, so most of the engineering polymers find their increased usage in day-to-day industrial as well as domestic needs. The influence of many process controlling elements on the mechanical part properties is already being studied extensively, which demands the study of tribological characteristics like friction and wear rate under varying normal load (NL), sliding velocities (V) and part building orientations (PBO). The results showed a significant impact of the PBO and NL at various V on the tribological properties under various significant suitable sliding circumstances. Cracks were formed in the cylindrical tribometer specimens of Acrylonitrile butadiene styrene (ABS) fabricated at low PBO when operated at high NL, and V. Vertical PBO to the FDM building platform in the layers form where a number of inter-layers can bear maximum NL at higher values of V resulted in uniform wear and low frictions. Friction was noticed very low at minimum NL when PBO was 0° (horizontal) and 90° (vertical), but increased at high NL between PBO of 15° to 60°. The FDM parts improved compared to those from conventional manufacturing processes

    Bio-Char Characterization Produced from Walnut Shell Biomass through Slow Pyrolysis: Sustainable for Soil Amendment and an Alternate Bio-Fuel

    No full text
    Bio-char has the ability to isolate carbon in soils and concurrently improve plant growth and soil quality, high energy density and also it can be used as an adsorbent for water treatment. In the current work, the characteristics of four different types of bio-chars, obtained from slow pyrolysis at 375 °C, produced from hard-, medium-, thin- and paper-shelled walnut residues have been studied. Bio-char properties such as proximate, ultimate analysis, heating values, surface area, pH values, thermal degradation behavior, morphological and crystalline nature and functional characterization using FTIR were determined. The pyrolytic behavior of bio-char is studied using thermogravimetric analysis (TGA) in an oxidizing atmosphere. SEM analysis confirmed morphological change and showed heterogeneous and rough texture structure. Crystalline nature of the bio-chars is established by X-ray powder diffraction (XRD) analysis. The maximum higher heating values (HHV), high fixed carbon content and surface area obtained for walnut shells (WS) samples are found as ~ 18.4 MJ kg−1, >80% and 58 m2/g, respectively. Improvement in HHV and decrease of O/C and H/C ratios lead the bio-char samples to fall into the category of coal and confirmed their hydrophobic, carbonized and aromatized nature. From the Fourier transform infra-red spectroscopy (FTIR), it is observed that there is alteration in functional groups with increase in temperature, and illustrated higher aromaticity. This showed that bio-chars have high potential to be used as solid fuel either for direct combustion or for thermal conversion processes in boilers, kilns and furnace. Further, from surface area and pH analysis of bio-chars, it is found that WS bio-chars have similar characteristics of adsorbents used for water purifications, retention of essential elements in soil and carbon sequestration

    Psychological distress reported by healthcare workers in Saudi Arabia during the COVID-19 pandemic: A cross-sectional study

    No full text
    INTRODUCTION: Few studies have considered the impact of COVID-19 on the mental health of healthcare workers (HCWs) in the Kingdom of Saudi Arabia (KSA). We estimated the prevalence and severity of psychological distress and characterized predisposing risk factors among HCWs in KSA during the COVID-19 pandemic. METHODS: We conducted a cross-sectional online survey of 1,985 HCWs from 6 hospitals across the country designated with caring for COVID-19 patients between April 16 and June 21, 2020. Our data analysis was performed using logistic regressions. Ordered logistic regressions were also performed using forward stepwise model selection to explore the effects of risk factors on psychological distress. RESULTS: The prevalence of psychological distress reported by HCWs in KSA was high, ranging from mild-moderate to severe in severity. Younger HCWs, women, those in contact with COVID-19 patients, and those who either had loved ones affected or who were themselves affected by COVID-19 were the most at-risk of psychological distress. Risk factors such as insomnia, loneliness, fear of transmission, and separation from loved ones most significantly predicted elevated levels of distress among HCWs. CONCLUSIONS: Increasing psychological distress was commonly reported by HCWs during the early months of COVID-19 pandemic in KSA. Public health policy makers and mental health professionals must give special attention to risk factors that predispose HCWs in KSA to psychological distress
    corecore