41 research outputs found

    Dipolar cortico-muscular electrical stimulation: a novel method that enhances motor function in both - normal and spinal cord injured mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Electrical stimulation of the central and peripheral nervous systems is a common tool that is used to improve functional recovery after neuronal injury.</p> <p>Methods</p> <p>Here we described a new configuration of electrical stimulation as it was tested in anesthetized control and spinal cord injury (SCI) mice. Constant voltage output was delivered through two electrodes. While the negative voltage output (ranging from -1.8 to -2.6 V) was delivered to the muscle via transverse wire electrodes (diameter, 500 μm) located at opposite ends of the muscle, the positive output (ranging from + 2.4 to +3.2 V) was delivered to the primary motor cortex (M1) (electrode tip, 100 μm). The configuration was named dipolar cortico-muscular stimulation (dCMS) and consisted of 100 pulses (1 ms pulse duration, 1 Hz frequency).</p> <p>Results</p> <p>In SCI animals, after dCMS, cortically-elicited muscle contraction improved markedly at the contralateral (456%) and ipsilateral (457%) gastrocnemius muscles. The improvement persisted for the duration of the experiment (60 min). The enhancement of cortically-elicited muscle contraction was accompanied by the reduction of M1 maximal threshold and the potentiation of spinal motoneuronal evoked responses at the contralateral (313%) and ipsilateral (292%) sides of the spinal cord. Moreover, spontaneous activity recorded from single spinal motoneurons was substantially increased contralaterally (121%) and ipsilaterally (54%). Interestingly, spinal motoneuronal responses and muscle twitches evoked by the test stimulation of non-treated M1 (received no dCMS) were significantly enhanced as well. Similar results obtained from normal animals albeit the changes were relatively smaller.</p> <p>Conclusion</p> <p>These findings demonstrated that dCMS could improve functionality of corticomotoneuronal pathway and thus it may have therapeutic potential.</p

    Rural waste generation: a geographical survey at local scale

    Get PDF
    "The paper examines the per capita waste generation rates from from rural areas of Neamț County (Romania) using thematic cartography. Geographical approach of this issue is difficult because the lack of a geostatistic database at commune scale. Spatial analysis of waste indicators reveals several disparities between localities. Comparability of data between communes located in various geographical conditions must be carrefully made according to local waste management systems. Several dysfunctionalities are outlined in order to compare these results, on the one hand, between localities and on the one hand, between recent years. Geographical analysis of waste generation rates is imperative for a proper monitoring of this sector. Data from 2009, 2010 and 2012 shows that rural waste management is in a full process of change towards a more organized, stable and efficient system." (author's abstract
    corecore