4,723 research outputs found
New Signatures of the Milky Way Formation in the Local Halo and Inner Halo Streamers in the Era of Gaia
We explore the vicinity of the Milky Way through the use of
spectro-photometric data from the Sloan Digital Sky Survey and high-quality
proper motions derived from multi-epoch positions extracted from the Guide Star
Catalogue II database. In order to identify and characterise streams as relics
of the Milky Way formation, we start with classifying, select, and study
subdwarfs with up to kpc away from the Sun as tracers
of the local halo system. Then, through phase-space analysis, we find
statistical evidence of five discrete kinematic overdensities among of the
fastest-moving stars, and compare them to high-resolution N-body simulations of
the interaction between a Milky-Way like galaxy and orbiting dwarf galaxies
with four representative cases of merging histories. The observed overdensities
can be interpreted as fossil substructures consisting of streamers torn from
their progenitors, such progenitors appear to be satellites on prograde and
retrograde orbits on different inclinations. In particular, of the five
detected overdensities, two appear to be associated, yelding twenty-one
additional main-sequence members, with the stream of Helmi et al. (1999) that
our analysis confirms on a high inclination prograde orbit. The three newly
identified kinematic groups could be associated with the retrograde streams
detected by Dinescu (2002) and Kepley et al. (2007), whatever their origin, the
progenitor(s) would be on retrograde orbit(s) and inclination(s) within the
range . Finally, we use our simulations to
investigate the impact of observational errors and compare the current picture
to the promising prospect of highly improved data expected from the Gaia
mission.Comment: 16 pages, 10 figures, 6 Tables. Accepted for publication in The
Astronomical Journa
Evidence of a large scale positive rotation-metallicity correlation in the Galactic thick disk
This study is based on high quality astrometric and spectroscopic data from
the most recent releases by Gaia and APOGEE. We select thin and thick
disk red giants, in the Galactocentric (cylindrical) distance range ~kpc and within ~kpc, for which full chemo-kinematical information
is available. Radial chemical gradients, , and rotational velocity-metallicity correlations, , are re-derived firmly uncovering that the thick disk
velocity-metallicity correlation maintains its positiveness over the ~kpc
range explored. This observational result is important as it sets experimental
constraints on recent theoretical studies on the formation and evolution of the
Milky Way disk and on cosmological models of Galaxy formation.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical
Societ
GPU-powered Simulation Methodologies for Biological Systems
The study of biological systems witnessed a pervasive cross-fertilization
between experimental investigation and computational methods. This gave rise to
the development of new methodologies, able to tackle the complexity of
biological systems in a quantitative manner. Computer algorithms allow to
faithfully reproduce the dynamics of the corresponding biological system, and,
at the price of a large number of simulations, it is possible to extensively
investigate the system functioning across a wide spectrum of natural
conditions. To enable multiple analysis in parallel, using cheap, diffused and
highly efficient multi-core devices we developed GPU-powered simulation
algorithms for stochastic, deterministic and hybrid modeling approaches, so
that also users with no knowledge of GPUs hardware and programming can easily
access the computing power of graphics engines.Comment: In Proceedings Wivace 2013, arXiv:1309.712
Validation of time domain near infrared spectroscopy in muscle measurements: Effect of a superficial layer
Molecular analysis of sarcomeric and non-sarcomeric genes in patients with hypertrophic cardiomyopathy.
Background: Hypertrophic cardiomyopathy (HCM) is a common genetic heart disorder characterized by
unexplained left ventricle hypertrophy associated with non-dilated ventricular chambers. Several genes
encoding heart sarcomeric proteins have been associated to HCM, but a small proportion of HCM patients
harbor alterations in other non-sarcomeric loci. The variable expression of HCM seems influenced by genetic
modifier factors and new sequencing technologies are redefining the understanding of genotype–phenotype
relationships, even if the interpretations of the numerous identified variants pose several challenges.
Methods and results: We investigated 62 sarcomeric and non-sarcomeric genes in 41 HCM cases and in
3 HCM-related disorders patients. We employed an integrated approach that combines multiple tools for
the prediction, annotation and visualization of functional variants. Genotype–phenotype correlations
were carried out for inspecting the involvement of each gene in age onset and clinical variability of HCM. The
80% of the non-syndromic patients showed at least one rare non-synonymous variant (nsSNV) and among
them, 58% carried alterations in sarcomeric loci, 14% in desmosomal and 7% in other non-sarcomeric ones
without any sarcomere change. Statistical analyses revealed an inverse correlation between the number of
nsSNVs and age at onset, and a relationship between the clinical variability and number and type of variants.
Conclusions: Our results extend the mutational spectrum of HCM and contribute in defining the molecular
pathogenesis and inheritance pattern(s) of this condition. Besides, we delineate a specific procedure for the
identification of the most likely pathogenetic variants for a next generation sequencing approach embodied in
a clinical context
Hardware design of LIF with Latency neuron model with memristive STDP synapses
In this paper, the hardware implementation of a neuromorphic system is
presented. This system is composed of a Leaky Integrate-and-Fire with Latency
(LIFL) neuron and a Spike-Timing Dependent Plasticity (STDP) synapse. LIFL
neuron model allows to encode more information than the common
Integrate-and-Fire models, typically considered for neuromorphic
implementations. In our system LIFL neuron is implemented using CMOS circuits
while memristor is used for the implementation of the STDP synapse. A
description of the entire circuit is provided. Finally, the capabilities of the
proposed architecture have been evaluated by simulating a motif composed of
three neurons and two synapses. The simulation results confirm the validity of
the proposed system and its suitability for the design of more complex spiking
neural network
A multilevel theoretical study to disclose the binding mechanisms of gold(III) bipyridyl compounds as selective aquaglyceroporin inhibitors
Structural studies have paved the avenue to a deeper understanding of aquaporins (AQPs), small ancient proteins providing efficient transmembrane pathways for water, small uncharged solutes such as glycerol, and possibly gas molecules. Despite the numerous studies, their roles in health and disease remain to be fully disclosed. The recent discovery of AuIII complexes as potent and selective inhibitors of aquaglyceroporin isoforms paves the way to their possible therapeutic application. The binding of the selective human AQP3 inhibitor, the cationic complex [Au(bipy)Cl2]+ (Aubipy), to the protein channel has been investigated here by means of a multi-level theoretical workflow that includes QM, MD and QM/MM approaches. The hydroxo complex was identified as the prevalent form of Aubipy in physiological media and its binding to AQP3 studied by MD. Both non-covalent and coordinative Aubipy–AQP3 adducts were simulated to probe their role in the modulation of water channel functionality. The electronic structures of representative Aubipy–AQP3 adducts were then analysed to unveil the role played by the metal moiety in their stabilisation. This study spotlights the overall importance of three key aspects for AQP3 inhibition: 1) water speciation of the AuIII complex, 2) stability of non-covalent adducts and 3) conformational changes induced within the pore by the coordinative binding of AuIII. The obtained results are expected to orient future developments in the design of isoform-selective AuIII inhibitors
Effect of a thin superficial layer on the estimate of hemodynamic changes in a two-layer medium by time domain NIRS
In order to study hemodynamic changes involved in muscular
metabolism by means of time domain fNIRS, we need to discriminate in the
measured signal contributions coming from different depths. Muscles are,
in fact, typically located under other tissues, e.g. skin and fat. In this paper,
we study the possibility to exploit a previously proposed method for
analyzing time-resolved fNIRS measurements in a two-layer structure with
a thin superficial layer. This method is based on the calculation of the timedependent
mean partial pathlengths. We validated it by simulating venous
and arterial arm cuff occlusions and then applied it on in vivo
measurements
Probe-hosted silicon photomultipliers for time-domain functional near-infrared spectrscopy: phantom and in vivo tests
We report the development of a compact probe for time-domain (TD) functional near-infrared spectroscopy
(fNIRS) based on a fast silicon photomultiplier (SiPM) that can be put directly in contact with the sample
without the need of optical fibers for light collection. We directly integrated an avalanche signal amplification
stage close to the SiPM, thus reducing the size of the detection channel and optimizing the signal immunity
to electromagnetic interferences. The whole detection electronics was placed in a plastic screw holder compatible
with the electroencephalography standard cap for measurement on brain or with custom probe holders. The
SiPM is inserted into a transparent and insulating resin to avoid the direct contact of the scalp with the 100-V bias
voltage. The probe was integrated in an instrument for TD fNIRS spectroscopy. The system was characterized
on tissue phantoms in terms of temporal resolution, responsivity, linearity, and capability to detect deep absorption
changes. Preliminary in vivo tests on adult volunteers were performed to monitor hemodynamic changes in
the arm during a cuff occlusion and in the brain cortex during a motor tas
- …
