14,759 research outputs found

    Critical levels of energy degradation

    Get PDF

    Theoretical study of turbulent channel flow: Bulk properties, pressure fluctuations, and propagation of electromagnetic waves

    Get PDF
    In this paper, we apply two theoretical turbulence models, DIA and the recent GISS model, to study properties of a turbulent channel flow. Both models provide a turbulent kinetic energy spectral function E(k) as the solution of a non-linear equation; the two models employ the same source function but different closures. The source function is characterized by a rate n sub s (k) which is derived from the complex eigenvalues of the Orr--Sommerfeld (OS) equation in which the basic flow is taken to be of a Poiseuille type. The O--S equation is solved for a variety of Reynolds numbers corresponding to available experimental data. A physical argument is presented whereby the central line velocity characterizing the basic flow, U0 sup L, is not to be identified with the U0 appearing in the experimental Reynolds number. The theoretical results are compared with two types of experimental data: (1) turbulence bulk properties, and (2) properties that depend stongly on the structure of the turbulence spectrun at low wave numbers. The only existing analytical expression for Pi (k) cannot be used in the present case because it applies to the case of a flat plate, not a finite channel

    Identification of Neutral B Mesons Using Correlated Hadrons

    Full text link
    The identification of the flavor of a neutral BB meson can make use of hadrons produced nearby in phase space. Examples include the decay of ``BB^{**}'' resonances or the production of hadrons as a result of the fragmentation process. Some aspects of this method are discussed, including time-dependent effects in neutral BB decays to flavor states, to eigenstates of CP and to other states, and the effects of possible coherence between B0B^0 and B0\overline{B}^0 in the initial state. We study the behavior of the leading hadrons in bb-quark jets and the expected properties of BB^{**} resonances. These are extrapolated from the corresponding DD^{**} resonances, of whose properties we suggest further studies.Comment: To be submitted to Phys. Rev. D. 26 pages, LaTeX, figures not included (available upon request). Technion-PH-93-32 / EFI 93-4

    Brief review of the searches for the rare decays Bs0μ+μB^0_s \rightarrow \mu^+ \mu^- and B0μ+μB^0 \rightarrow \mu^+ \mu^-

    Full text link
    The current experimental status of the searches for the very rare decays Bs0μ+μB^0_s \rightarrow \mu^+ \mu^- and B0μ+μB^0 \rightarrow \mu^+ \mu^- is discussed. These channels are highly sensitive to various extensions of the Standard Model, specially in the scalar and pseudoscalar sector. The recent, most sensitive measurements from the CDF, ATLAS, CMS and LHCb collaborations are discussed and the combined upper exclusion limit on the branching fractions determined by the LHC experiments is shown to be 4.2×1094.2\times 10^{-9} for Bs0μ+μB^0_s \rightarrow \mu^+ \mu^- and 0.8×1090.8\times 10^{-9} for B0μ+μB^0 \rightarrow \mu^+ \mu^-. The implications of these tight bounds on a selected set of New Physics models is sketched.Comment: 20 pages, 15 figures, invited review for Modern Physics Letters

    Doppler peaks from active perturbations

    Get PDF
    We examine how the qualitative structure of the Doppler peaks in the angular power spectrum of the cosmic microwave anisotropy depends on the fundamental nature of the perturbations which produced them. The formalism of Hu and Sugiyama is extended to treat models with cosmic defects. We discuss how perturbations can be ``active'' or ``passive'' and ``incoherent'' or ``coherent'', and show how causality and scale invariance play rather different roles in these various cases. We find that the existence of secondary Doppler peaks and the rough placing of the primary peak unambiguously reflect these basic properties.Comment: uufile, 8pages, 3 figures. Now available at http://euclid.tp.ph/Papers/index.html; Changes: URL added, Eqn. (8) expanded, grant numbers include

    Transport signatures of quasiparticle poisoning in a Majorana island

    Full text link
    We investigate effects of quasiparticle poisoning in a Majorana island with strong tunnel coupling to normal-metal leads. In addition to the main Coulomb blockade diamonds, "shadow" diamonds appear, shifted by 1e in gate voltage, consistent with transport through an excited (poisoned) state of the island. Comparison to a simple model yields an estimate of parity lifetime for the strongly coupled island (~ 1 {\mu}s) and sets a bound for a weakly coupled island (> 10 {\mu}s). Fluctuations in the gate-voltage spacing of Coulomb peaks at high field, reflecting Majorana hybridization, are enhanced by the reduced lever arm at strong coupling. In energy units, fluctuations are consistent with previous measurements.Comment: includes supplementary materia

    Initial Conditions for Bubble Universes

    Full text link
    The "bubble universes" of Coleman and De Luccia play a crucial role in string cosmology. Since our own Universe is supposed to be of this kind, bubble cosmology should supply definite answers to the long-standing questions regarding cosmological initial conditions. In particular, it must explain how an initial singularity is avoided, and also how the initial conditions for Inflation were established. We argue that the simplest non-anthropic approach to these problems involves a requirement that the spatial sections defined by distinguished bubble observers should not be allowed to have arbitrarily small volumes. Casimir energy is a popular candidate for a quantum effect which can ensure this, but [because it violates energy conditions] there is a danger that it could lead to non-perturbative instabilities in string theory. We make a simple proposal for the initial conditions of a bubble universe, and show that our proposal ensures that the system is non-perturbatively stable. Thus, low-entropy conditions can be established at the beginning of a bubble universe without violating the Second Law of thermodynamics and without leading to instability in string theory. These conditions are inherited from the ambient spacetime.Comment: Further clarifications; 28 pages including three eps files. This is the final [accepted for publication] versio

    Parity lifetime of bound states in a proximitized semiconductor nanowire

    Get PDF
    Quasiparticle excitations can compromise the performance of superconducting devices, causing high frequency dissipation, decoherence in Josephson qubits, and braiding errors in proposed Majorana-based topological quantum computers. Quasiparticle dynamics have been studied in detail in metallic superconductors but remain relatively unexplored in semiconductor-superconductor structures, which are now being intensely pursued in the context of topological superconductivity. To this end, we introduce a new physical system comprised of a gate-confined semiconductor nanowire with an epitaxially grown superconductor layer, yielding an isolated, proximitized nanowire segment. We identify Andreev-like bound states in the semiconductor via bias spectroscopy, determine the characteristic temperatures and magnetic fields for quasiparticle excitations, and extract a parity lifetime (poisoning time) of the bound state in the semiconductor exceeding 10 ms.Comment: text and supplementary information combine
    corecore