88,587 research outputs found

    DCU 250 Arabic dependency bank: an LFG gold standard resource for the Arabic Penn treebank

    Get PDF
    This paper describes the construction of a dependency bank gold standard for Arabic, DCU 250 Arabic Dependency Bank (DCU 250), based on the Arabic Penn Treebank Corpus (ATB) (Bies and Maamouri, 2003; Maamouri and Bies, 2004) within the theoretical framework of Lexical Functional Grammar (LFG). For parsing and automatically extracting grammatical and lexical resources from treebanks, it is necessary to evaluate against established gold standard resources. Gold standards for various languages have been developed, but to our knowledge, such a resource has not yet been constructed for Arabic. The construction of the DCU 250 marks the first step towards the creation of an automatic LFG f-structure annotation algorithm for the ATB, and for the extraction of Arabic grammatical and lexical resources

    Prototyping the Semantics of a DSL using ASF+SDF: Link to Formal Verification of DSL Models

    Full text link
    A formal definition of the semantics of a domain-specific language (DSL) is a key prerequisite for the verification of the correctness of models specified using such a DSL and of transformations applied to these models. For this reason, we implemented a prototype of the semantics of a DSL for the specification of systems consisting of concurrent, communicating objects. Using this prototype, models specified in the DSL can be transformed to labeled transition systems (LTS). This approach of transforming models to LTSs allows us to apply existing tools for visualization and verification to models with little or no further effort. The prototype is implemented using the ASF+SDF Meta-Environment, an IDE for the algebraic specification language ASF+SDF, which offers efficient execution of the transformation as well as the ability to read models and produce LTSs without any additional pre or post processing.Comment: In Proceedings AMMSE 2011, arXiv:1106.596

    A smart voltage and current monitoring system for three phase inverters using an android smartphone application

    Get PDF
    In this paper, a new smart voltage and current monitoring system (SVCMS) technique is proposed. It monitors a three phase electrical system using an Arduino platform as a microcontroller to read the voltage and current from sensors and then wirelessly send the measured data to monitor the results using a new Android application. The integrated SVCMS design uses an Arduino Nano V3.0 as the microcontroller to measure the results from three voltage and three current sensors and then send this data, after calculation, to the Android smartphone device of an end user using Bluetooth HC-05. The Arduino Nano V3.0 controller and Bluetooth HC-05 are a cheap microcontroller and wireless device, respectively. The new Android smartphone application that monitors the voltage and current measurements uses the open source MIT App Inventor 2 software. It allows for monitoring some elementary fundamental voltage power quality properties. An effort has been made to investigate what is possible using available off-the-shelf components and open source software
    • ā€¦
    corecore