7 research outputs found

    Overall Survival Time Prediction for High-grade Glioma Patients based on Large-scale Brain Functional Networks

    Get PDF
    High-grade glioma (HGG) is a lethal cancer with poor outcome. Accurate preoperative overall survival (OS) time prediction for HGG patients is crucial for treatment planning. Traditional presurgical and noninvasive OS prediction studies have used radiomics features at the local lesion area based on the magnetic resonance images (MRI). However, the highly complex lesion MRI appearance may have large individual variability, which could impede accurate individualized OS prediction. In this paper, we propose a novel concept, namely brain connectomics-based OS prediction. It is based on presurgical resting-state functional MRI (rs-fMRI) and the non-local, large-scale brain functional networks where the global and systemic prognostic features rather than the local lesion appearance are used to predict OS. We propose that the connectomics features could capture tumor-induced network-level alterations that are associated with prognosis. We construct both low-order (by means of sparse representation with regional rs-fMRI signals) and high-order functional connectivity (FC) networks (characterizing more complex multi-regional relationship by synchronized dynamics FC time courses). Then, we conduct a graph-theoretic analysis on both networks for a jointly, machine-learning-based individualized OS prediction. Based on a preliminary dataset (N = 34 with bad OS, mean OS, ~400 days; N = 34 with good OS, mean OS, ~1030 days), we achieve a promising OS prediction accuracy (86.8%) on separating the individuals with bad OS from those with good OS. However, if using only conventionally derived descriptive features (e.g., age and tumor characteristics), the accuracy is low (63.2%). Our study highlights the importance of the rs-fMRI and brain functional connectomics for treatment planning

    Stochastic growth pattern of untreated human glioblastomas predicts the survival time for patients

    No full text
    Glioblastomas are highly malignant brain tumors. Knowledge of growth rates and growth patterns is useful for understanding tumor biology and planning treatment logistics. Based on untreated human glioblastoma data collected in Trondheim, Norway, we first fit the average growth to a Gompertz curve, then find a best fitted white noise term for the growth rate variance. Combining these two fits, we obtain a new type of Gompertz diffusion dynamics, which is a stochastic differential equation (SDE). Newly collected untreated human glioblastoma data in Seattle, US, re-verify our model. Instead of growth curves predicted by deterministic models, our SDE model predicts a band with a center curve as the tumor size average and its width as the tumor size variance over time. Given the glioblastoma size in a patient, our model can predict the patient survival time with a prescribed probability. The survival time is approximately a normal random variable with simple formulas for its mean and variance in terms of tumor sizes. Our model can be applied to studies of tumor treatments. As a demonstration, we numerically investigate different protocols of surgical resection using our model and provide possible theoretical strategies

    Glioblastoma Segmentation: Comparison of Three Different Software Packages

    Get PDF
    To facilitate a more widespread use of volumetric tumor segmentation in clinical studies, there is an urgent need for reliable, user-friendly segmentation software. The aim of this study was therefore to compare three different software packages for semi-automatic brain tumor segmentation of glioblastoma; namely BrainVoyagerTM QX, ITK-Snap and 3D Slicer, and to make data available for future reference. Pre-operative, contrast enhanced T1-weighted 1.5 or 3 Tesla Magnetic Resonance Imaging (MRI) scans were obtained in 20 consecutive patients who underwent surgery for glioblastoma. MRI scans were segmented twice in each software package by two investigators. Intra-rater, inter-rater and between-software agreement was compared by using differences of means with 95% limits of agreement (LoA), Dice's similarity coefficients (DSC) and Hausdorff distance (HD). Time expenditure of segmentations was measured using a stopwatch. Eighteen tumors were included in the analyses. Inter-rater agreement was highest for BrainVoyager with difference of means of 0.19 mL and 95% LoA from -2.42 mL to 2.81 mL. Between-software agreement and 95% LoA were very similar for the different software packages. Intra-rater, inter-rater and between-software DSC were ≥ 0.93 in all analyses. Time expenditure was approximately 41 min per segmentation in BrainVoyager, and 18 min per segmentation in both 3D Slicer and ITK-Snap. Our main findings were that there is a high agreement within and between the software packages in terms of small intra-rater, inter-rater and between-software differences of means and high Dice's similarity coefficients. Time expenditure was highest for BrainVoyager, but all software packages were relatively time-consuming, which may limit usability in an everyday clinical setting
    corecore